• Title/Summary/Keyword: Moho discontinuity

Search Result 28, Processing Time 0.03 seconds

A Study on the Crustal Structure of South Korea by using Seismic Waves (지진파(地震波)를 이용(利用)한 남한(南韓)의 지각구조(地殼構造) 연구(硏究))

  • Kim, Sang Jo;Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.51-61
    • /
    • 1983
  • By using local earthquake data, the Korean crust model and travel-time tables were determined. The upper crustal earthquakes (Hongsung event and Ssanggyesa event) were considered as auxiliary information, and the lower crustal earthquakes (Uljin event and Pohang event) played an important role in determining model parameters. The possible existence of Low Velocity Layer (LVL) in the upper mantle was suggested by discrepancy in the arrival times of Sariwon earthquake which occurred below Moho discontinuity. Computer program for the determination of the model parameters was developed in order to screened out the optimum parameters by comparing the travel times of observed data with theoretical ones. We found that the discontinuities of Conrad, Moho, and upper and lower boundaries of LVL have their depth of 15, 32, 55 and 75 Km, respectively. The velocities of P-and S-wave in the layers between those discontinities were found to be (1) 5.98, 3.40 Km/sec (2) 6.38, 3.79 Km/sec (3) 7.95, 4.58 Km/sec (4) unknown (5) 8.73, 5.05 Km/sec, respectively from the top layer. Travel-time tables were also computed for the inter-local earthquakes which have their direct wave paths above the LVL.

  • PDF

Crustal Structure of the Korean Peninsula from Broadband Teleseismic Records by Using Receiver Function (광대역 원격지진의 수신함수를 이용한 한반도 지각구조)

  • Kim, So Gu;Lee, Seoung Kyu;Jun, Myung soon;Kang, Ik Bum
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Broadband receiver functions are developed from teleseismic P waveforms recorded at Wonju (KSRS), Inchon (IRIS), and Pohang (PHN), and are analyzed to examine the crustal structure beneath the three stations. The teleseismic receiver functions are inverted in the time domain to the vertical P wave velocity structure beneath the stations. Clear P-to-S converted phases from the Moho interface are observed in teleseismic seismograms recorded at the three stations. We estimated the crustal velocity structures beneath the stations using the receiver function inversion. The general features of inversion results are as follows: (1) For Pohang station, there is a high velocity gradient at a 4~5 km deep for SE and NW back azimuth and a low velocity zone at around 10 km deep. The Moho depth is 28 km for NW direction. (2) The shallow crustal structure beneath Wonju station is somewhat complex and there is a high-velocity zone ($V_p{\simeq}6.8km/sec$) at 3 to 4 km deep. The average crustal thickness is 33 km, and a transition zone exists at a 30~33 km deep of lower crust, of which velocity is abruptly changed 6.4 to 7.9 km/sec. (3) For Inchon station, the crustal velocity gradient monotonously increases up to the Moho discontinuity and the velocity is abruptly changed from 6.2 km/sec to 7.9 km/sec at 29 km deep.

  • PDF

Moho Discontinuity Studies Beneath the Broadband Stations Using Receiver Functions in South Korea (수신함수를 이용한 남한의 광대역 관측망 하부의 Moho 불연속면 연구)

  • Kim, So-Gu;Lee, Seong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.139-155
    • /
    • 2001
  • We investigate the vertical velocity models beneath the newly installed broadband seismic network of KMA (Korea Meteorological Administration) by using receiver function inversion technique. The seismic phases are primarily P-to-S conversions and reverberations generated at the two highest impedance interfaces like the Moho (crust-mantle boundary) and the sediment-basement contact. We obtained the teleseismic P-wave receiver functions, which were derived from teleseismic records of Seoul (SEO), Inchon (INCN), Tejeon (TEJ) , Sosan (SOS/SES), Kangnung (KAN), Ulchin (ULC/ULJ), Taegu (TAG), Pusan (PUS), and Ullung-do (ULL) stations. For Kwangju (KWA/KWJ) and Chunchon (CHU) stations, the Moho conversion Ps arrivals and waveforms of radial receiver functions are azimuthally inconsistent and unclear. From the receiver function inversion result, we found that crustal thickness is 29 km at INCN, SEO, and SOS (SES) stations, 28 km at KAN station in the Kyonggi Massif, 32 km at TEJ station in Okchon Folded Belt, 34 km at TAG, 33 km at PUS station in the Kyongsang Basin, 32 km at KWJ station (readjusted station by prior KWA station) included in the Youngdong-Kwangju Depression Zone, 28 km at ULC station in the eastern margin of the Ryongnam Massif, and 17 km at ULL station in the Ullung Island of the East Sea, respectively. The Moho configuration of INCN, SOS, KWJ, and KAN stations show a laminated smooth transition zone with a 3-5 km thick. The upper crusts(${\sim}5km$) of KAN, ULC, and PUS stations show complex structures with a high velocity. The unusually thick crusts are found at the TAG and PUS stations in the Kyongsang Basin compared to the thin (29-32 km) crust of the western part (INCN, SEO, SOS, TEJ, and KWA stations) The crustal thickness beneath Ullung Island (ULL station) shows the suboceanic crust with about 17 km thickness and complex with a high velocity layer of the upper crust, and the amplitudes of Incoming Ps waves from the western direction are relatively large compared to those from othor directions.

  • PDF

Tectonic Structure Modeling around the Ulleung Basin and Dokdo Using Potential Data (포텐셜 자료를 이용한 울릉분지와 독도 주변 지체구조 연구)

  • Park, Gye-Soon;Park, Jun-Suk;Kwon, Byung-Doo;Kim, Chang-Hwan;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2009
  • The East Sea including the area of this study is identified as a typical back-arc sea located in the backside of the Circum-Pacific volcanic and earthquake belt. Previous studies reported that the East Sea has begun to open by tensile force and formed its current shape. In this study, we investigate the regional tectonic structure of the East Sea using ship-borne gravity, magnetic, and satellite gravity data. The result of three-dimensional depth inversion shows that Moho depth of the study area is approximately 13-25km and inversely proportional to the thickness of the crust. In addition, as approaching to the center of the Ulleung Basin (UB), the thickness of the crust of the UB becomes thinner due to the extension caused by tensile force which had opened the East Sea.

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

Crustal structure of the Korean peninsula by inverting the travel times of first-arrivals from large explosions (대규모 발파자료 초동주시 역산을 통한 한반도 지각 속도구조 연구)

  • Kim Ki Young;Hong Myung Ho;Lee Jung Mo;Moon Woo Il;Baag Chang Eob;Jung Hee Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.103-107
    • /
    • 2005
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting first arrival times. One-dimensional velocity models derived by joint analyses of teleseismic receiver functions and surface wave dispersion at several stations near the profiles were uesd to build initial models. The raypaths indicate several midcrust interfaces including ones at approximate depths of 2.0 and 14.9 km with refraction velocities of approximately 6.0 and 7.1 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting velocity varies from 7.8 to 8.1 km/s along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at 6-7 km depth under the Okchon fold belt, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin whose thickness is less than 4.2 km.

  • PDF

Crustal Structure of the Korean Peninsula by Inverting the Rravel Times of First-arrivals from Large Explosions (대규모 발파자료 초동주시 역산을 통한 한반도 지각 속도구조 연구)

  • Kim, Ki-Young;Hong, Myong-Ho;Lee, Jung-Mo;Moon, Woo-Il;Baag, Chang-Eob;Jung, Hee-Ok
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.45-48
    • /
    • 2005
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting first arrival times. One-dimensional velocity models derived by joint analyses of teleseismic receiver functions and surface wave dispersion at several stations near the profiles were uesd to build initial models. The raypaths indicate several midcrust interfaces including ones at approximate depths of 2.0 and 14.9 km with refraction velocities of approximately 6.0 and 7.1 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting velocity varies from 7.8 to 8.1 km/s along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at 6-7 km depth under the Okchon fold belt, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin whose thickness is less than 4.2 km.

  • PDF

Seismic Velocity Structure Along the KCRT-2008 Profile using Traveltime Inversion of First Arrivals (초동주시 역산을 통한 KCRT-2008 측선 하부의 지진파 속도구조)

  • Kim, Ki-Young;Lee, Jung-Mo;Baag, Chang-Eob;Jung, Hee-Ok;Hong, Myung-Ho;Kim, Jun-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.153-158
    • /
    • 2010
  • To investigate the velocity structure in the central and southern parts of the Korean peninsula, a 299-km NW-SE seismic refraction profile KCRT-2008was obtained across major tectonic boundaries. Seismic waves were generated by detonating 250 ~ 1500 kg explosives at depths of 50 ~ 100 m in eight drill holes located at intervals of 21 ~ 113 km. The seismic signals were detected by 4.5 Hz geophones at a nominal interval of 500 m. The first-arrival times were inverted to derive a velocity tomogram. The raypaths indicate several mid-crust interfaces including those at approximate depths of 2 ~ 3, 11 ~ 13, and 20 km. The Moho discontinuity with refraction velocity of 7.7 to 8.1 km/s has a maximum depth of 34.5 km under the central portion of the peninsula. The Moho becomes shallower as the Yellow Sea and the East Sea are approached on the west and east coasts of the peninsula, respectively. The depth of the 7.6 km/s velocity contour varies from 31.3 km to 34.4 km. The velocity tomogram shows the existence of a 129 km wide low-velocity zone centered at 7.2 km depth under the Okchon fold belt and Gyeonggi massif and low-velocity(< 5.4 km/s) rocks in the Gyeongsang sedimentary basin with a maximum thickness of 2.6 km

Gravity Survey on the Subsurface Structure between Waekwan-Pohang in Kyoungsang Basin (중력탐사(重力探査)에 의(依)한 경상층군내(慶尙層群內) 왜관(倭館)-포항간(浦項間)의 지하구조(地下構造) 연구(硏究))

  • Min, Kyung Duck;Chung, Chong Dae
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 1985
  • The gravity measurement has been conducted at 113 stations with an interval of about 1km along the national road of about 120km running from Busangdong to Pohang through Waekwan, Daegu, Youngchun and Aankang. The subsurface geology and structure along the survey line is interpreted from Bouguer anomaly by applying Fourier method and Talwani method for two dimensional body. The mean depth of Moho discontinuity is 31.4km, and the depth decreases very slowly from inner continent toward east coast. The depth of Conrad discontinuity increases from 11km at the east coastal area to 17km at the inner continental area, and especially increases rapidly in the area between Waekwan to Busangdong. The depth of basement of Kyoungsang Basin inereases from near Waekwan toward Daegu upto about 4. 8km, and increases rapidly to reach the maximum depth of about 8.5km at 8km east of Daegu. But it starts to decrease from the place of 10km west of Youngchun, and is about 7.2km at Youngchun and about 6km at 6km east of Youngchun. The depth starts to increase smoothly beyond this point, and is 7km at 15km east of Youngchun. From this point, the depth starts to decrease again, and is about 3.8km at Ankang. The depth of basement of Pohang Basin is 500m at Pohang and about 650m at 5km west of Pohang. A massive granite body which is considered to be a part of Palgongsan Granite exposed at the depth of 1. 5km at 9km west of Youngchun. Another massive granite body is situated underneath the Pohang Basin at depth of 1.5 to 2km, and sedimentary rocks of Kyoungsang Group and volcanic rocks are distributed between Pohang Basin and this granite body. Finally, Yangsan Fault is identified at about 2.5km east of Ankang.

  • PDF

Study of Crustal Structure in North Korea Using 3D Velocity Tomography (3차원 속도 토모그래피를 이용한 북한지역의 지각구조 연구)

  • So Gu Kim;Jong Woo Shin
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.293-308
    • /
    • 2003
  • New results about the crustal structure down to a depth of 60 km beneath North Korea were obtained using the seismic tomography method. About 1013 P- and S-wave travel times from local earthquakes recorded by the Korean stations and the vicinity were used in the research. All earthquakes were relocated on the basis of an algorithm proposed in this study. Parameterization of the velocity structure is realized with a set of nodes distributed in the study volume according to the ray density. 120 nodes located at four depth levels were used to obtain the resulting P- and S-wave velocity structures. As a result, it is found that P- and S-wave velocity anomalies of the Rangnim Massif at depth of 8 km are high and low, respectively, whereas those of the Pyongnam Basin are low up to 24 km. It indicates that the Rangnim Massif contains Archean-early Lower Proterozoic Massif foldings with many faults and fractures which may be saturated with underground water and/or hot springs. On the other hand, the Pyongyang-Sariwon in the Pyongnam Basin is an intraplatform depression which was filled with sediments for the motion of the Upper Proterozoic, Silurian and Upper Paleozoic, and Lower Mesozoic origin. In particular, the high P- and S-wave velocity anomalies are observed at depth of 8, 16, and 24 km beneath Mt. Backdu, indicating that they may be the shallow conduits of the solidified magma bodies, while the low P-and S-wave velocity anomalies at depth of 38 km must be related with the magma chamber of low velocity bodies with partial melting. We also found the Moho discontinuities beneath the Origin Basin including Sari won to be about 55 km deep, whereas those of Mt. Backdu is found to be about 38 km. The high ratio of P-wave velocity/S-wave velocity at Moho suggests that there must be a partial melting body near the boundary of the crust and mantle. Consequently we may well consider Mt. Backdu as a dormant volcano which is holding the intermediate magma chamber near the Moho discontinuity. This study also brought interesting and important findings that there exist some materials with very high P- and S-wave velocity annomoalies at depth of about 40 km near Mt. Myohyang area at the edge of the Rangnim Massif shield.