• Title/Summary/Keyword: Modulus of ground

Search Result 231, Processing Time 0.031 seconds

Improvement Effect on Design Parameters by Pressure Grouting Applied on Micro-piling for Slope Reinforcement (가압식 마이크로파일로 보강된 사면의 설계인자 개량효과)

  • Hong, Won-Pyo;Han, Hyun-Hee;Choi, Yong-Ki;Hong, Ik-Pyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.163-170
    • /
    • 2005
  • In this paper, the rock bolts, soil nails with filling grout and the micro-piling with injecting grout by pressure were applied for the stabilization of the cut slopes consisting of sedimentary rocks, igneous rocks and metamorphic rocks respectively. The field measurements and 3-D FEM analyses to find out mobilized tensile stresses of the grouted-reinforcing members installed in the drilled holes were executed on each site. With assuming the increments of the cohesive strength in the improved ground, the back analysis using direct calibration approach of changing the elastic modulus of the ground was used to find out the improved elastic modulus which yields the same tensile stresses from field measurements. The results of back analysis show that the elastic modulus of the improved ground were 4 to 6 times as large as the elastic modulus of original ground. Consequently, the design for slope reinforcement to be more rational, it is proposed that not only the improved cohesive strength is to be used in the incremental ranges on well-known previous proposed data, but also the increased elastic modulus which is about 5 times as large as the original elastic modulus is to be considered in design.

  • PDF

Modulus of Horizontal Subgrade Reaction in Liquefying Sand by Shaking Table Test (진동대 시험을 통한 액상화되는 지반의 수평지반반력계수에 대한 연구)

  • 박종관;한성길;김상규;이용도
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.255-262
    • /
    • 2000
  • Shaking table tests were peformed to evaluate the subgrade reaction of ground according to the build-up of pore water pressure. Model pile was installed in the sand ground. The acceleration of the model ground, the pore water pressure build-up and displacement of pile were recorded by measuring devices. Subgrade reaction approach based on Winker soil model was applied to obtain the modulus of the horizontal subgrade reaction. The results of analysis show that the reduction factor of the subgrade reaction due to pore pressure increase is about 1 and the horizontal subgrade reaction of liquefied ground is not influenced by the stiffness of pile, a ground acceleration and the intial ground density.

  • PDF

A Study the Relationship Fofmula of Elastic Modulus and Axcial Stress of clay (점성토의 일축압축 강도와 탄성계수의 상관관계식에 관한 연구)

  • Seo, Hyo-Sik;Park, Choon-Sik;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.147-151
    • /
    • 2010
  • In this study, the clay specimen of Busan-Gyeongnam region was used for unconfined compression test to compare the relationship formula between elasticity modulus at peak($E_f$), elasticity modulus at $q_u$/2($E_{50}$), and cohesion when the sample breaks down by region and by level of cohesion. As the result, the regional results were found to be in the range of $E_f$ = 14c~47c and $E_{50}$ = 43c~137c; by cohesion, the results for very soft ground was $E_f$ = 15c~40c and $E_{50}$ = 54c~101c, $E_f$ = 13c~63c and $E_{50$ = 40c~147c for soft ground, $E_f$ = 18c~47c and $E_{50}$ = 57c~144c for medium ground, and $E_f$ = 25c~45c and $E_{50}$ = 68c~115c for solid ground. The average of the relationship formula between elasticity modulus-cohesion for the clay used in this study was $E_f$ = 32c, $E_{50}$ = 93c. This is 2.5~5 times smaller than the existing relationship formula.

  • PDF

Estimation of compressibility for Busan clay by CPT (CPT를 이용한 부산점토의 압축특성에 관한 연구)

  • Hong, Sung-Jin;Lee, Moon-Joo;Shim, Seong-Hyeon;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.320-325
    • /
    • 2009
  • The constrained modulus, representative property to evaluate compressibility of soil, is needed to estimate the settlement of ground structure. A series of lab and field cone penetration tests for clayey soil of Busan new-port and Noksan industrial area were conducted to evaluate the estimation method of constrained modulus. Since CPT generates large deformation of ground, it is difficult to correlate the cone resistance with the constrained modulus. Therefore, appropriate correlation between them is essential to estimate the constrained modulus based on CPT results. The test results show that the ratio of the constrained modulus to the cone resistance is inversely proportional with plasticity index. Based on this result, the estimation method of constrained modulus for Busan clay is suggested.

  • PDF

A Study on The Engineering Characteristics of Corestone Ground Mass. (핵석지반의 강도 및 변형특성 연구)

  • Lee, Su-Gon;Kim, Dong-Eun;Lee, Chun-Young;Kim, Jae-Heun;Yang, Hong-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.327-333
    • /
    • 2004
  • Corestone ground mass has complicated characteristics as it is made up of hard and stiff corestone in a relatively weak and soft matrix. Model corestone ground mass which is physically identical with the stiff corestone in weak matrix were tested in uniaxial compression. The tests show that the increase of the corestone proportion brought the gradual increase of the elastic modulus as well. The ground mass was weaker when the corestone proportion was low while it was stronger in higher corestone proportion. The size of the corestone had no influence on the strength and elastic modulus as long as the proportion of the corestone remains same.

  • PDF

A Study on the Geotechnical Charateristics of Corestone Ground Mass (핵석 지반의 공학적 특성 연구)

  • Lee, Su-Gon;Kim, Dong-Eun;Lee, Chun-Young;Kim, Jae-Heun;Yang, Hong-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.68-76
    • /
    • 2004
  • Corestone ground mass has complicated characteristics as it is made up of hard and stiff corestone in a relatively weak and soft matrix. Model corestone ground mass whichis physically identical with the stiff corestone in weak matrix were tested in uniaxial compression. The tests showthat the increase of the corestone proportion brought the gradual increase of the elastic modulus as well. The ground mass was weaker when the corestone proportion was low while it was stronger in higher corestone proportion. The size of the corestone had no influence on the strength and elastic modulus as long as the proportion of the corestone remains same.

Study on the subgrade reaction modulus$(K_{30})$ and strain modulus$(E_v)$ (지반반력계수$(K_{30})$와 변형률계수$(E_v)$에 대한 고찰)

  • Kim, Dae-Sang;Choi, Chan-Yong;Kim, Seong-Jung;Yu, Jin-Young;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.264-270
    • /
    • 2007
  • Two modulus, strain modulus $(E_v)$ and subgrade reaction modulus $(K_{30})$ are being used as a standard for bearing stiffness in Korea Railroad design. The first is used in Europe and the other is used in Japan. The methodologies to obtain the two modulus are similar in using plate. But testing methods are different in loading to plate. Therefore, according to soil strain range, there should be large gap in not only computations of deformation modulus but also the necessary time to test. At first, this paper focuses on the two kinds of test methods to evaluate bearing stiffness. Secondly, based on elastic theory, the theory to obtain the two coefficients are studied thoroughly. Finally, the correlations between the two coefficients were analyzed and evaluated based on the field test results more than 38 places. The matching values for subgrade and ground between $K_{30}$ and $E_{v2}$ are proposed with the consideration of the proposed strain reduction factor (1.5 for subgrade and 3 for ground) and safety factor, respectively.

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

Strength and Deformation Characteristics, and Numerial Analysis for Cement Admixed Clay and Composite Ground (시멘트 혼합토 및 복합지반의 강도, 변형 특성 및 수치해석)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.51-58
    • /
    • 2014
  • In this research, the composite grounds including original clay and soil-cement were constructed for conducting uniaxial compression test. Strength and deformation properties were analysed using results of laboratory tests with variations of water content of clay, replacement ratio and cement content. Numerical simulation using 3D distinct element method was conducted for soil cement. For strength of composite ground that contains more than cement contents of 15 %, it is more effective to increase cement content than increase of replacement ratio. Strength and elastic modulus of composite ground could be predicted by regression equations using uniaxial compression strength of clay, cement content of soil cement and replacement ratio. For strength and elastic modulus of soil cement, which is most important things for predicting final strength and elastic modulus of composite ground, numerical simulation using the distinct element method adapted bonding model could be used to verify laboratory test, and predict strength and elastic modulus.

The Estimation of Initial Elastic Modulus of Clay by Standard Consolidation Test (표준압밀시험에 의한 점토의 초기탄성계수 산정)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Unlike artificially created homogeneous materials, the process of calculating the elastic modulus of natural soil involves the possibility of errors. Because the stress-strain behavior of soil is nonlinear, the secant modulus of elasticity is often used based on 1/2 of the stress at failure. Since soil has the property of changing its elastic modulus depending on the confining pressure, numerical analysis models that analyze its behavior inevitably include complex elements. The hyperbolic model, which relatively accurately simulates the behavior immediately after loading in soft ground, assumes that the stress-strain curve of the consolidated undrained triaxial test is hyperbolic and requires the slope of the tangent line at the starting point. However, the slope of the initial tangent in the stress-strain curve obtained from an actual triaxial test is difficult to have regularity according to changes in confining pressure. Additionally, due to the characteristics of a hyperbola, even small changes in related factors cause large changes in the hyperbola. Therefore, there is a lot of randomness in the process of calculating model parameters from the triaxial test results, which causes large differences in the results. Therefore, the method of calculating the initial elastic modulus by the consolidation test presented in this study is also used to verify the method by the triaxial test. It can be applied. However, since this study was applied to only one sample showing typical consolidation characteristics, it is necessary to check samples with various physical properties in the future.