• Title/Summary/Keyword: Modulus function

Search Result 491, Processing Time 0.026 seconds

Reliability analysis of simply supported beam using GRNN, ELM and GPR

  • Jagan, J;Samui, Pijush;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.739-749
    • /
    • 2019
  • This article deals with the application of reliability analysis for determining the safety of simply supported beam under the uniformly distributed load. The uncertainties of the existing methods were taken into account and hence reliability analysis has been adopted. To accomplish this aim, Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM) and Gaussian Process Regression (GPR) models are developed. Reliability analysis is the probabilistic style to determine the possibility of failure free operation of a structure. The application of probabilistic mathematics into the quantitative aspects of a structure and improve the qualitative aspects of a structure. In order to construct the GRNN, ELM and GPR models, the dataset contains Modulus of Elasticity (E), Load intensity (w) and performance function (${\delta}$) in which E and w are inputs and ${\delta}$ is the output. The achievement of the developed models was weighed by various statistical parameters; one among the most primitive parameter is Coefficient of Determination ($R^2$) which has 0.998 for training and 0.989 for testing. The GRNN outperforms the other ELM and GPR models. Other different statistical computations have been carried out, which speaks out the errors and prediction performance in order to justify the capability of the developed models.

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion

  • Do, Jinung;Montoya, Brina M.;Gabr, Mohammed A.
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.429-438
    • /
    • 2019
  • Microbially induced carbonate precipitation (MICP) is an innovative soil improvement approach utilizing metabolic activity of microbes to hydrolyze urea. In this paper, the shear response and the erodibility of MICP-treated sand under axial compression and submerged impinging jet were evaluated at a low confining stress range. Loose, poorly graded silica sand was used in testing. Specimens were cemented at low confining stresses until target shear wave velocities were achieved. Results indicated that the erodibility parameters of cemented specimens showed an increase in the critical shear stress by up to three orders of magnitude, while the erodibility coefficient decreased by up to four orders of magnitude. Such a trend was observed to be dependent on the level of cementation. The treated sand showed dilative behavior while the untreated sands showed contractive behavior. The shear modulus as a function of strain level, based on monitored shear wave velocity, indicated mineral debonding may commence at 0.05% axial strain. The peak strength was enhanced in terms of emerging cohesion parameter based on utilizing the Mohr-Coulomb failure criteria.

Isogeometric analysis of FG polymer nanocomposite plates reinforced with reduced graphene oxide using MCST

  • Farzam, Amir;Hassani, Behrooz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.69-93
    • /
    • 2022
  • Reduced graphene oxide (rGO) is one of the derivatives of graphene, which has drawn some experimental research interests in recent years however, numerical research studying the mechanical behaviors of composites made of rGO has not been taken into consideration yet. The objective of this research is to investigate the buckling, and free vibration of functionally graded reduced graphene oxide reinforced nanocomposite (FG rGORC) plates employing isogeometric analysis (IGA). The effective Young's modulus of rGORC is determined based onthe Halpin-Tsai model. Four different FG distribution types of rGO are considered varying across plate thickness. Besides, the refined plate theory is used based on Reddy's third-order function. To capture the size effect, modified couple stress theory (MCST) is employed. A comprehensive study is provided examining the effect of various parameters including rGO weight fraction, FG distribution types, boundary conditions, material length scale parameter, etc. Our obtained results show that the addition of only 1% of uniformly distributed rGO into epoxy plates leads to the fundamental frequency and critical buckling load 18% and 39% higher than those of pure epoxy plates, respectively.

Water Relations Parameters of Heracleum moellendorffii Hance Obtained from Pressure-Volume Curves (P-V 곡선법을 활용한 어수리의 수분특성 분석)

  • Lee, K.C.;Kwon, Y.H.;Lee, K.M.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2017
  • This study was carried out to establish a proper cultivation site and to diagnose the drought tolerance of Heracleum moellendorffii leaves by using pressure-volume curves. As a result of analysing data measured, the leaf of H. moellendorffii showed the osmotic pressure at full turgor (Ψosat) was -1.0MPa, and that at incipient plasmolysis (Ψotlp) -1.2MPa. Then, the value of maximum bulk modulus of elasticity Emax was 28MPa, showing the sightly strong drought tolerance of H. moellendorffii. Furthermore, the values of relative water contents RWCtlp and RWC* were above 88%, showing that the function of osmoregulation is somewhat better. Thus, responses to water relations such as Ψosat, Ψotlp, Emax, RWCtlp and RWC* of H. moellendorffii showed it's slightly high drought tolerance property.

Evaluation of Drought Tolerance of Oplopanax elatus Obtained from Pressure-Volume Curves (P-V 곡선법을 활용한 땃두릅나무의 내건성 평가)

  • Lee, K.C.;Kwon, Y.H.;Kwon, Y.K.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This study was carried out to establish a proper cultivation site and to diagnose the drought tolerance of Oplopanax elatus leaves by using pressure-volume curves. As a result of analysing data measured, the leaf of Oplopanax elatus showed the osmotic pressure at full turgor(Ψosat) was -0.77 MPa, and the osmotic pressure at incipient plasmolysis(Ψotlp) was -0.90 MPa. Then, the value of maximum bulk modulus of elasticity Emax was 3.7 MPa, showing that slightly lower drought tolerance of Oplopanax elatus. Furthermore, the values of relative water contents RWCtlp and RWC* were above 80%, showing that the function of osmoregulation is somewhat better. Thus, responses to water relations such as Ψosat, Ψotlp, Emax, RWCtlp and RWC* of Oplopanax elatus showed relatively lower drought-tolerance property indicating that those growth are appropriate in high moisture soil sites.

Neutral surface-based static and free vibration analysis of functionally graded porous plates

  • J.R. Cho
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.431-440
    • /
    • 2023
  • The functionally graded (FG) porous plates are usually characterized by the non-symmetric elastic modulus distribution through the thickness so that the plate neutral surface does not coincide with the mid-surface. Nevertheless, the conventional analysis models were mostly based on the plate mid-surface so that the accuracy of resulting numerical results is questionable. In this context, this paper presents the neutral surface-based static and free vibration analysis of FG porous plates and investigates the differences between the mid- and neutral surface-based analysis models. The neutral surface-based numerical method is formulated using the (3,3,2) hierarchical model and approximated by the last introduced natural element method (NEM). The volume fractions of metal and ceramic are expressed by the power-law function and the cosine-type porosity distributions are considered. The proposed numerical method is demonstrated through the benchmark experiment, and the differences between two analysis models are parametrically investigated with respect to the thickness-wise material and porosity distributions. It is found from the numerical results that the difference cannot be negligible when the material and porosity distributions are remarkably biased in the thickness direction.

Physical Properties of Alkali Resistant-Glass Fibers with Refused Coal Ore in Continues Fiber Spinning Conditions

  • Ji-Sun Lee;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.355-362
    • /
    • 2024
  • AR (alkali resistant)-glass fibers were developed to provide better alkali resistance, but there is currently no research on AR-glass fiber manufacturing. In this study, we fabricated glass fiber from AR-glass using a continuous spinning process with 40 wt% refused coal ore. To confirm the melting properties of the marble glass, raw material was put into a (platinum) Pt crucible and melted at temperatures up to 1,650 ℃ for 2 h and then annealed. To confirm the transparent clear marble glass, visible transmittance was measured and the fiber spinning condition was investigated by high temperature viscosity measurement. A change in diameter was observed according to winding speed in the range of 100 to 700 rpm. We also checked the change in diameter as a function of fiberizing temperature in the range of 1,240 to 1,340 ℃. As winding speed increased at constant temperature, fiber diameter tended to decrease. However, at fiberizing temperature at constant winding speed, fiber diameter tended to increase. The properties of the prepared spinning fibers were confirmed by optical microscope, tensile strength, modulus and alkali-resistance tests.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Influence of airborne-particle abrasion on flexural strength of fiber-reinforced composite post (미세입자 분사마모 표면처리가 Fiber-Reinforced Composite 포스트의 굴곡 강도에 미치는 영향)

  • Sim, Eun-Ju;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Purpose: Many studies have shown that airborne-particle abrasion of fiber post can improve the bonding strength to resin cement. But, airborne-particle abrasion may influence the property of fiber post. The purpose of this study is to evaluate the influence of airborne-particle abrasion on flexural strength of fiber post. Materials and Methods: Two fiber-reinforced posts; DT Light Post Size 2 (1.8 mm diameter, Bisco Inc) and RelyX Fiber Post Size 3 (1.9 mm diameter, 3M ESPE); were used in this study. Each group was divided into 3 subgroups according to different surface treatments; without pretreatment: $50{\mu}m$ aluminum oxide (Cobra$^{(R)}$, Renfert): and $30{\mu}m$ aluminum oxide modified with silica (Rocatec Soft$^{(R)}$, 3M ESPE). After airborne-particle abrasion procedure, three-point bending test was done to determine the flexural strength and flexural modulus. The diameter of each posts was measured to an accuracy of 0.01 mm using a digital micrometer. There was no diameter change before and after airborneparticle abrasion. The mean flexural moduli and flexural strengths calculated using the appropriate equations. The results were statistically analyzed using One-way ANOVA and Scheffe's post-hoc test at 95% confidencial level. Results: There was no significant difference on flexural strength between groups. Conclusion: In the limitation of this study, flexural strength and flexural modulus of fiber post are not affected by airborne-particle abrasion.