• Title/Summary/Keyword: Modulus function

Search Result 488, Processing Time 0.025 seconds

Flexural strength and reliability of highly translucent colored zirconia (고반투명 유색 지르코니아의 굽힘강도와 신뢰도에 대한 연구)

  • Kong, Hyun-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the flexural strength and reliability of highly translucent colored zirconia for all ceramic restoration. Materials and Methods: Bar-shaped specimens (25 × 4 × 2.5 mm) were prepared from highly translucent monolithic zirconia. Three experimental groups were set up according to color (shade A0, A1, and A3). For each group, 20 specimens were prepared. Flexural strength was determined using a 3-point flexural test and results were analyzed with one-way ANOVA test. Weibull statistical analysis provided 2 parameter estimates: Weibull modulus and characteristic strength. X-ray diffraction (XRD) analysis was performed. Results: There was statistically significant difference between uncolored (Shade A0) and colored (shade A1 and A3) (P < 0.05), but there was no difference between colored groups (P > 0.05). The uncolored group had higher reliability compared with colored study groups. On x-ray diffraction analysis of each group, typical peaks of tetragonal phase appeared in all groups. Conclusion: Within the limitations of this in vitro study, coloring highly translucent zirconia had significant effect on flexural strength and reliability. Therefore, clinicians should be careful when using highly translucent colored zirconia to prevent breakage of veneering ceramic and enhance aesthetics.

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Numerical analysis of blast-induced anisotropic rock damage (터발파압력에 기인한 이방성 암반손상의 수치해석적 분석)

  • Park, Bong-Ki;Cho, Kook-Hwan;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.291-302
    • /
    • 2004
  • Blast-induced anisotropic rock damage around a blast-hole was analyzed by a using numerical method with user-defined subroutine based on continuum damage mechanics. Anisotropic blasting pressure was evaluated by applying anisotropic ruck characteristics to analytical solution which is a function of explosive and rock properties. Anisotropic rock damage was evaluated by applying the proposed anisotropic blasting pressure. Blast-induced isotropic rock damage was also analyzed. User-defined subroutines to solve anisotropic and isotropic damage model were coded. Initial rock damages in natural ruck were considered in anisotropic and isotropic damage models. Blasting pressure and elastic modulus of rock were major influential parameters from parametric analysis results of isotropic rock damage. From the results of anisotropic rock damage analysis, blasting pressure was the most influential parameter. Anisotropic rock damage area in horizontal direction was approximately 34% larger and about 12% smaller in vertical direction comparing with isotropic rock damage area. Isotropic rock damage area under fully coupled charge condition was around 30 times larger than that under decoupled charge condition. Blasting pressure under fully coupled charge condition was estimated to be more than 10 times larger than that of decoupled charge condition.

  • PDF

Paclitaxel Coating on ePTFE Artificial Graft and the Release Behavior (ePTFE 인공혈관에 대한 파클리탁셀의 코팅 및 방출거동)

  • Lim, Soon-Yong;Kim, Cheol-Joo;Kim, Eun-Jin;Kwon, Oh-Kyoung;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2012
  • In this study, expanded poly(tetrafluoro ethylene) (ePTFE) graft was modified to be used as a hemodialysis vascular access. Biodegradable poly(D,L-lactide-$co$-glycolide) (PLGA) was coated onto the inner surface of ePTFE graft with paclitaxel, which is often used as an anti-cancer agent and for reducing neointimal hyperplasia. Surface characterization before and after PLGA coating was carried out by SEM and ATR-FTIR. Porous sturcture of ePTFE was maintained after coating of PLGA solution. The amounts of coated PLGA and paclitaxel determined by ATR-FTIR and HPLC were 1.96 and 0.263 mg/$cm^2$, respectively. Young's modulus was decreased and tensile strength was increased by PLGA coating. Released paclitaxel as a function of incubation time was monitored by HPLC. Approximately 35% of coated paclitaxel was released steadily for 4 weeks with the biodegradation of PLGA. From these results, it is expected that the effect of paclitaxel on reducing neointimal hyperplasia and stenosis is maintained for a long time.

Development of 3D Dynamic Numerical Simulation Method on a Soil-Pile System (지반-말뚝 시스템에 대한 3차원 동적 수치 모델링 기법 개발)

  • Kim, Seong-Hwan;Na, Seon-Hong;Han, Jin-Tae;Kim, Sung-Ryul;Sun, Chang-Guk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.85-92
    • /
    • 2011
  • The dynamic behavior of piles becomes very complex due to soil-pile dynamic interaction, soil non-linearity, resonance phenomena of soil-pile system and so on. Therefore, the proper numerical simulation of the pile behavior needs much effort and calculation time. In this research, a new modeling method, which can be applied to the conventional finite difference analysis program FLAC 3D, was developed to reduce the calculation time. The soil domain in this method is divided into a near-field region and a far-field region, which is not influenced by the soil-pile dynamic interaction. Then, the ground motion of the far-field is applied to the boundaries of the near-field instead of modeling the far-field region as finite meshes. In addition, the soil non-linearity behavior is modeled by using the hysteretic damping model, which determines the soil tangent modulus as a function of shear strain and the interface element was applied to simulate the separation and slip between the soil and pile. The proposed method reduced the calculation time by as much as one third compared with a usual modeling method and maintained the accuracy of the calculated results. The calculated results by the proposed method showed a good agreement with the prototype pile behavior, which was obtained by applying a similitude law to the 1-g shaking table test results.

UBVI CCD Photometry of the Globular Cluster M30 (구상성단 M30의 UBVI CCD 측광연구)

  • Lee, Ho;Jeon, Young-Beom
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.557-568
    • /
    • 2006
  • We present CCD UBVI photometry for more than 10,000 stars in $20'.5{\times}20'.5$ field of the halo globular cluster M30. From a color-magnitude diagram, main sequence turnoff was obtained when $V_{TO},\;(B-V)_{TO},\;and\;(V-I)_{TO}\;are\;8.63{\pm}0.05,\;0.44{\pm}0.05\;and\;0.63{\pm}0.05$, respectively. From a (U-B)-(B-V) diagram, reddening parameter, E(B-V) equals $0.05{\pm}0.01$ and a UV color excess ${\delta}(U-B)\;is\;0.27{\pm}0.01$. The abundance is derived, where [Fe/H] equals $-2.05{\pm}0.09$ according to the photometric method and spectroscopic data. The observed luminosity function of M30 shows an excess in the number of red giants relative to the number of turnoff stars, when comparing with the predictions of canonical models. Using the Hipparcos parallaxes for subdwarfs, we estimate distance modulus, $(m-M)_o\;as\;14.75{\pm}0.12$. Using the R and R' method, we find helium abundances, Y(R) as $0.23{\pm}0.02$, Y(R') as $0.29{\pm}0.02$, respectively. Finally, the cluster' sage dispersion was deduced from 10.71 Gyr to 17 Gyr.

A Deep Optical Photometric Study of the Massive Young Open Clusters in the Sagittarius-Carina Spiral Arm

  • Hur, Hyeonoh
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.44.1-44.1
    • /
    • 2016
  • The Sagittarius-Carina spiral arm in the Galaxy contains several massive young open clusters. We present a deep optical photometric study on the massive young open clusters in the Sagittarius-Carina arm, Westerlund 2 and the young open clusters in the ${\eta}$ Carina nebula. Westerlund 2 is a less studied starburst-type cluster in the Galaxy. An abnormal reddening law for the intracluster medium of the young starburst-type cluster Westerlund 2 is determined to be $R_{V,cl}=4.14{\pm}0.08$. The distance modulus is determined from zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams of the early-type members to be $V_0-M_V=13.9{\pm}0.14mag$. The pre-main sequence (PMS) members of Westerlund 2 are selected by identifying the optical counterparts of X-ray emission sources from the Chandra X-ray observation and mid-infrared emission sources from the Spitzer/IRAC (the Infrared Array Camera) observation. The initial mass function (IMF) shows a slightly flat slope of ${\Gamma}=-1.1{\pm}0.1$ down to $5M_{\odot}$. The age of Westerlund 2 is estimated to be. 1.5 Myr from the main-sequence turn-on luminosity and the age distribution of PMS stars. The ${\eta}$ Carina nebula is the best laboratory for the investigation of the Galactic massive stars and low-mass star formation under the influence of numerous massive stars. We have performed deep wide-field CCD photometry of stars in the ${\eta}$ Carina nebula to determine the reddening law, distance, and the IMF of the clusters in the nebula. We present VRI and $H{\alpha}$ photometry of 130,571 stars from the images obtained with the 4m telescope at Cerro Tololo Inter-American Observatory (CTIO). RV,cl in the η Carina nebula gradually decreases from the southern part (~4.5, around Trumpler 14 and Trumpler 16) to the northern part around Trumpler 15 (~3.5). Distance to the young open clusters in the ${\eta}$ Carina nebula is partly revised based on the zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams (CMDs) and the (semi-) reddening-independent CMDs. We select the PMS members and candidates by identifying the optical counterparts of X-ray sources from the Chandra Carina Complex Survey and mid-infrared excess emission stars from the Spitzer Vela-Carina survey. From the evolutionary stage of massive stars and PMS stars, we obtain that the northern young open cluster Trumpler 15 is distinctively older than the southern young open clusters, Trumpler 14 (${\leq}2.5 Myr$) and Trumpler 16 (2.5-3.5 Myr). The slopes of the IMF of Trumpler 14, Trumpler 15, and Trumpler 16 are determined to be $-1.2{\pm}0.1$, $-1.5{\pm}0.3$, and $-1.1{\pm}0.1$, respectively. Based on the RV,cl of several young open clusters determined in this work and the previous studies of our group, We suggest that higher RV,cl values are commonly found for very young open clusters with the age of < 4 Myr. We also confirm the correlation between the slope of the IMF and the surface mass density of massive stars.

  • PDF

Seasonal Changes of Water Relations Parameters of the Korean Mistletoe (Viscum album var. coloratum) Leaves (겨우살이 엽의 계절별 수분특성)

  • Lee, Kyeong-Cheol;Kim, Cheol-Woo;Yi, Jae-Seon;Han, Sang-Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • This study was conducted to study the seasonal changes of relative water relations parameters by pressure-volume curves of Korean mistletoe (Viscum album var. coloratum) leaves for understanding ecological characteristics. In growing season, the osmotic potentials at full turgor (${\Psi}_o^{sat}$) and at incipient plasmolysis (${\Psi}_o^{tlp}$) decreased, while increased the maximum bulk elastic modulus of the cell wall ($E_{max}$) and relavive water content ($RWC^{tlp}$). Korean mistletoe in Quercus variabilis and Korean mistletoe in Quercus mongolica in November showed best maximum perssure potential (${\Psi}_{P,\;max}$). Pressure potential (${\Psi}_P$) and water potential (${\Psi}_L$) in Korean mistletoe in Quercus variabilis were rapidly decreased with decreasing of relative water content. The values of $RWC^{tlp}$ in November were all above 84% showing that the function of osmoregulation is somewhat better, and symplastic water content (Vo/DW) and maximum water content (Vt/DW) were variable seasonally. Thus, responses to water relations of Korean mistletoe in Quercus variabilis and Korean mistletoe in Quercus mongolica such as ${\Psi}_o^{sat},\;{\Psi}_o^{tlp},\;E_{max},\;{\Psi}_{P,\;max},\;RWC^{tlp}$ showed increaing drought tolerance with increasing of leaf aging.

Flowability and Strength Properties of Mortar and Self-Compacting Concrete Mixed with Waste Concrete Powder (폐콘크리트 분말을 혼합한 모르타르 및 자기충전 콘크리트의 유동 및 강도특성)

  • Choi, Yun-Wang;Jung, Moon-Young;Moon, Dae-Joong;Kim, Sung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.517-526
    • /
    • 2006
  • In this study, in order to utilize waste concrete powder(WCP) which is occurred in manufacturing high quality recycled aggregate as an admixture for self-compacting concrete(SCC), the properties of cement paste, mortar, and concrete that were mixed two types of WCP, 928 and 1,360 $cm^2/g$ of surface area, were analyzed. As a result of experiment, we have found that WCP was a porous material with angle. When WCP was utilized as an admixture for SCC, its flowability and viscosity increased in proportion to the increase of a replacement ratio, and that a replacement ratio of WCP was proper within 15%. The compressive strength at 28 days mixed respectively with WCP2, 15 and 30%, showed about 36 and 28 MPa, and it showed a similar trend with a function suggested in CEB-FIP for the relationship of compressive strength and elastic modulus. According to the results, it is judged that WCP2 can be utilized as an mineral admixture of normal strength SCC.