• Title/Summary/Keyword: Module mismatch

Search Result 43, Processing Time 0.026 seconds

Analysis of Module Mismatch Loss in Solar PV String and Feasibility Study for Improvement Method (태양광 PV 스트링에서의 모듈 부정합 손실의 분석 및 개선 기법 타당성 연구)

  • Ahn, Hee-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • In this paper, the power loss due to PV module mismatch in PV string is analyzed and a mismatch compensation method is proposed to improve the efficiency of PV system. The analysis of mismatch loss using PV model simulation reveals that the mismatch module may decrease the total efficiency because the MPPT function of power conditioner make the PV system operate at the local maximum point. The mismatch loss can be severe if the maximum power point current of mismatch module is less than that of string. The proposed compensation method which is simply implemented with a buck type converter shows the possibility to remove the mismatch loss. The effectiveness of the analysis and compensation method is verified by a prototype experiment.

Method for PV Module Mismatch Compensation to Reduce Parallel Mismatch in Solar PV Array (태양광 PV 어레이에서 병렬 부정합을 저감시키는 모듈 부정합 보상기법)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.170-171
    • /
    • 2010
  • The power loss due to PV module mismatch in PV array system is analyzed and a mismatch compensation method is proposed. A dc-dc converter is used to compensate for series mismatch caused by a low current module in a string. The converter is controlled to maximize the array power output. The proposed compensation method was verified by PSpice simulation.

  • PDF

Diagnosis Method of PV Module Mismatch using Voltage and Current Waveforms (태양광 모듈의 전압 및 전류 파형을 이용한 부정합 진단 기법)

  • Ahn, Hee-Wook;Park, Gi-Yob
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.17-22
    • /
    • 2011
  • Techniques for mismatch loss minimization to increase the PV system efficiency are under development recently. In this paper, a method to make diagnosis of PV module mismatch is presented, which uses a concept of operating point factor. The method is based on the fact that the ratio of the incremental conductance of a PV module to instantaneous conductance is 1 when the module is operating at its maximum power point. The variations of module voltage and current are taking place by the maximum power point tracker in the power conditioning units of PV system. The effectiveness of the method is verified through an application to a real PV system.

Characteristics variation of PV module by damaged bypass diodes

  • Sin, U-Gyun;Jeong, Tae-Hui;Go, Seok-Hwan;Gang, Gi-Hwan;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.424.2-424.2
    • /
    • 2016
  • Solar cell converts light energy to electric energy. But a solar cell generates low power, PV module is fabricated by connected in series with dozens of solar cell. Owing to solar cell connected in series, power of PV module is influenced by shading or mismatch power of solar cells. To prevent power loss of PV module by shading or mismatch current, Bypass diodes are installed in PV module. Bypass diode operating reverse voltage by shading or mismatch power of solar cells bypass mismatch current. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we confirm characteristics variation of PV module with damaged bypass diode. As a result, power of PV module with damaged bypass diode is reduced and Temperature of that is increased.

  • PDF

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

Converter to Compensate for PV Module Mismatch in Solar PV String (PV 스트링의 모듈 부정합 보상용 컨버터)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.123-125
    • /
    • 2009
  • Mismatch of electrical characteristics of modules in PV string invokes mismatch power loss. The mismatch occurs due to various causes such as shadow, aging, contamination, and module exchange. The concept of mismatch compensation converter(MCC) is presented in this paper to remedy the mismatch loss problem. MCC is connected to irregular modules only. MCC is composed of dc-dc converter and MPPT controller. It is noted that MPPT algorithm is employed to control MCC and is effective for maximum power available from irregular modules. The selection guide of MPPT control period is given based on the period of MPPT in PCU. The effectiveness of the MCC is verified by a prototype experiment.

  • PDF

Compensation of PV Module Current for Reduction of Mismatch Losses in PV Systems (태양광 시스템의 부정합 손실 저감을 위한 모듈 전류 보상 기법)

  • Ahn, Hee-Wook;Park, Gi-Yob
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • A current compensation method to reduce the mismatch loss in PV systems is proposed as a way to increase the power generation efficiency. A dc-dc converter is used to supply currents to irregular modules in a PV string and is powered from the string output. The converter's voltage conversion ratio is adjusted so that all the modules in the string are operated at the maximum power point. The power rating and size of the converter can be reduced since only the current difference between the regular and irregular module may be supplied. The compensated string shows very little voltage mismatch compared to other regular strings. The validity of the proposed method is verified through a simulation and experiments in a prototype PV system.

Analysis of Power Variation and Design Optimization of a-Si PV Modules Considering Shading Effect (음영효과를 고려한 a-Si PV모듈의 출력 변화 및 최적 설계조건에 관한 연구)

  • Shin, Jun-Oh;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Ki-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.102-107
    • /
    • 2010
  • a-Si solar cell has relatively dominant drift current when compared with crystalline solar cell due to the high internal electric field. Such drift current make an impact on the PV module in the local shading. In this paper, the a-Si PV module output characteristics of shading effects was approached in terms of process condition, because of the different deposition layer of thin film lead to rising the resistance. We suggested design condition to ensure the long-term durability of the module with regard to the degradation factors such as hot spot by analyzing the module specification. The result shows a remarkable difference on module uniformity for each shading position. In addition, the unbalanced power loss due to power mismatch of each module could intensify the degradation.

Electric Circuit Analysis for PV Array on Short-Circuit Failure of Bypass Diode in PV Module (PV모듈의 바이패스 다이오드 단락 고장 시 태양광어레이 회로 특성분석)

  • Lee, Chung-Geun;Shin, Woo-Gyun;Lim, Jong Rok;Hwang, Hye-Mi;Ju, Young-Chul;Jung, Young-Seok;Kang, Gi-Hwan;Chang, Hyo-Sik;Ko, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.15-25
    • /
    • 2019
  • As the installation of photovoltaic systems increases, fire accidents of PV system grow every year. Most of PV system fires have been reported to be caused by electrical components. The majority of fire accidents occurred in combiner box, which is presumed to be short-circuit accidents due to dustproof and waterproof failures or heat deterioration of blocking diode. For this reason, the blocking diode installation became optional by revised PV combiner regulation. In this paper, according to the revised regulation, reverse current that generated by voltage mismatch was measured and analyzed in PV array without a blocking diode. The factors that cause voltage mismatch in array are assumed to be shaded PV module and short circuit failure of bypass diode. As the result of experiment, there is no reverse current to flow under shading condition in module, but reverse current flows on the failure of bypass diode in module. According to the module's I-V characteristic curve analysis, open voltage was slightly reduced due to operation of bypass diode in shading. However, it showed that open circuit voltage has decreased significantly in the failure of bypass diode. This indicates that the difference in open voltage reduction of voltage mismatch factor causes reverse current to flow.

Analyses of additive Crypto-module Architecture for a Sensor Network (센서 네트워크를 위한 부가적인 암호모듈의 구조 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.795-798
    • /
    • 2005
  • In this paper, we analyses of additive crypto-module architecture for a sensor network. Recent research in sensor networks has raised security issues for small embedded devices. Security concerns are motivated by the development of a large number of sensor devices in the field. Limitations in processing power, battery life, communication bandwidth and memoryconstrain devices. A mismatch between wide arithmetic for security and embedded data buscombined with lack of certain operations. Then, we compared the architecture of crypto-module in this paper.

  • PDF