• Title/Summary/Keyword: Modular Technology

Search Result 628, Processing Time 0.026 seconds

Implementation of Functional Blocks of Modular Toy for Creative Education (창의적 교육을 위한 모듈형 완구의 기능 블록 구현)

  • Kim, Jong-Tae;Park, Ji-Youp;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.95-102
    • /
    • 2017
  • Modular toys for creative education require functional blocks to create various types of movements. An active drive module and a lot of passive connection blocks are needed to express motion with combination. In this paper, we propose the design of modular toys to produce various creative movements and controller structure working with them. In order to facilitate the connection between the designed modules, a connection method and a suitable mechanism are suggested. We also dealt with the design of various types of sensor modules that can work in conjunction with modular toys. Using these toys, typical standard application form that can be imitated educationally is suggested and showed the usefulness of the modular toy by actually applying it with designed modules and components. The proposed method is applied to actual educational toys, and the operation is effectively performed by recording operation and playing repetitive operation.

Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types (천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가)

  • Kwak, Eui-Shin;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

Worker Safety in Modular Construction: Investigating Accident Trends, Safety Risk Factors, and Potential Role of Smart Technologies

  • Khan, Muhammad;Mccrary, Evan;Nnaji, Chukwuma;Awolusi, Ibukun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.579-586
    • /
    • 2022
  • Modular building is a fast-growing construction method, mainly due to its ability to drastically reduce the amount of time it takes to construct a building and produce higher-quality buildings at a more consistent rate. However, while modular construction is relatively safer than traditional construction methods, workers are still exposed to hazards that lead to injuries and fatalities, and these hazards could be controlled using emerging smart technologies. Currently, limited information is available at the intersection of modular construction, safety risk, and smart safety technologies. This paper aims to investigate what aspects of modular construction are most dangerous for its workers, highlight specific risks in its processes, and propose ways to utilize smart technologies to mitigate these safety risks. Findings from the archival analysis of accident reports in Occupational Safety and Health Administration (OSHA) Fatality and Catastrophe Investigation Summaries indicate that 114 significant injuries were reported between 2002 and 2021, of which 67 were fatalities. About 72% of fatalities occurred during the installation phase, while 57% were caused by crushing and 85% of crash-related incidents were caused by jack failure/slippage. IoT-enabled wearable sensing devices, computer vision, smart safety harness, and Augment and Virtual Reality were identified as potential solutions for mitigating identified safety risks. The present study contributes to knowledge by identifying important safety trends, critical safety risk factors and proposing practical emerging methods for controlling these risks.

  • PDF

A Scalable Hardware Implementation of Modular Inverse (모듈러 역원 연산의 확장 가능형 하드웨어 구현)

  • Choi, Jun-Baek;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.901-908
    • /
    • 2020
  • This paper describes a method for scalable hardware implementation of modular inversion. The proposed scalable architecture has a one-dimensional array of processing elements (PEs) that perform arithmetic operations in 32-bit word, and its performance and hardware size can be adjusted depending on the number of PEs used. The hardware operation of the scalable processor for modular inversion was verified by implementing it on Spartan-6 FPGA device. As a result of logic synthesis with a 180-nm CMOS standard cells, the operating frequency was estimated to be in the range of 167 to 131 MHz and the gate counts were in the range of 60,000 to 91,000 gate equivalents when the number of PEs was in the range of 1 to 10. When calculating 256-bit modular inverse, the average performance was 18.7 to 118.2 Mbps, depending on the number of PEs in the range of 1 to 10. Since our scalable architecture for computing modular inversion in GF(p) has the trade-off relationship between performance and hardware complexity depending on the number of PEs used, it can be used to efficiently implement modular inversion processor optimized for performance and hardware complexity required by applications.

A Business Model for Application of the Modular Building in the Rental Market (건축 임대시장에서 모듈러 건축의 적용성 연구 - 수익성 분석을 중심으로 -)

  • Yoon, Jongsik;Shin, Dongwoo;Cha, Heesung;Kim, Kyungrai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.3-11
    • /
    • 2015
  • The current real estate market is in a state that is considerably shrink due to the recession and long-term reduction of trading. In response, the government recently announced an innovative way for the middle-class residential housing and it is taking the lead to activate the real estate market. Meanwhile, the domestic housing market is entering a transition period, including structural changes of household structure, changes from joeonse to rent increasingly. Also single-member households will rise steeply, so that makes the high demand of small houses. In addition, the domestic construction industry is interested in new technology called Modular building. The Modular construction is an off-site construction system that shorten construction period, eco-friendly building technology and mobility etc, which can be used in various field. Overall, there are two major issues of the current market, one is the change of the real estate market, and the other is the modular construction. This study will propose modular business model in the rental market through the analysis the profitability of the modular business scenarios and IRR analysis.

Comparison of Behavior of Connections between Modular Units according to Shape of Connector Plates (연결 강판 형상에 따른 모듈러 유닛 간 접합부의 거동 비교)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.467-476
    • /
    • 2016
  • For the connections between modular units in modular buildings, the bolted joints with connector plates are used commonly. The strength of structure is determined by the weakest part of structure and the connections may be weaker than the members being joined. Therefore, to check the safety of modular building, the structural performance of connections between modular units as well as that of beam-to-column connections should be evaluated. In this study, the behavior of module to module connection with straight and cross shaped connector plates is investigated by lateral cyclic tests according to KBC2009 0722.2.4 which shall be conducted by controlling the story drift angle in the width and the longitudinal direction respectively. All of test results generally show the stable ductile behavior up to 0.04rad drift levels and the tests in longitudinal direction show a superior energy dissipation per cycle in each of the load steps. However, the straight shaped connector plates have the degradation of stiffness with cyclic loading and the larger drift angle of column than the cross shaped connector plates.

Technology Selection for Offshore Underwater Small Modular Reactors

  • Shirvan, Koroush;Ballinger, Ronald;Buongiorno, Jacopo;Forsberg, Charles;Kazimi, Mujid;Todreas, Neil
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1303-1314
    • /
    • 2016
  • This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical $CO_2$ cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

A Study on Prediction Techniques about Fire Resistance of Modular Beam in ISO Fire (표준화재조건 모듈러보 내화성능 예측기법에 관한 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Kim, Gyeong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.518-523
    • /
    • 2008
  • The modular beam made of steel material is wholly responsible for the load stress of the structure, therefore securing the fire-resistant capacity of the steel beam is absolutely important. The economic efficiency achieved by minimizing the thickness of the fire-resistant board attached, is also essential at the same time. Accordingly, a study of optimization of the thickness and interval of fire-resistant boards shall be conducted side by side. Therefore, in this study we have anticipated fire-resistant capacity by using a general-purpose S/W for finite elements, ABAQUS(6.7.1), in order to propose the configurable conditions that can secure the optimal fire-resisting capacity of modular beam. As a result of this analysis, it was impossible to secure the fire-resistance capacity when directly attaching fire-resistant board(30mm) on the modular board in accordance with KS F 2257-1, and the fire-resistant boards were manufactured in shape of module in consideration of its installation interval rather than direct application.

  • PDF

Efficient Design and Performance Analysis of a Hardware Right-shift Binary Modular Inversion Algorithm in GF(p)

  • Choi, Piljoo;Lee, Mun-Kyu;Kong, Jeong-Taek;Kim, Dong Kyue
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.425-437
    • /
    • 2017
  • For efficient hardware (HW) implementation of elliptic curve cryptography (ECC), various sub-modules for the underlying finite field operations should be implemented efficiently. Among these sub-modules, modular inversion (MI) requires the most computation; therefore, its performance might be a dominant factor of the overall performance of an ECC module. To determine the most efficient MI algorithm for an HW ECC module, we implement various classes of MI algorithms and analyze their performance. In contrast to the common belief in previous research, our results show that the right-shift binary inversion (RS) algorithm performs well when implemented in hardware. In addition, we present optimization methods to reduce the area overhead and improve the speed of the RS algorithm. By applying these methods, we propose a new RS-variant that is both fast and compact. The proposed MI module is more than twice as fast as the other two classes of MI: shifting Euclidean (SE) and left-shift binary inversion (LS) algorithms. It consumes only 15% more area and even 5% less area than SE and LS, respectively. Finally, we show that how our new method can be applied to optimize an HW ECC module.

Finite Element Analysis of Two-Dimensional Cold Forging By Using Modular Remeshing and Expert System (단위체 격자 재구성법과 전문가 시스템을 이용한 2차원 냉간 단조의 유한 요소 해석)

  • Yun, Hui-Do;Kim, Yeong-Tae;Lee, Nak-Gyu;Yang, Dong-Yeol;Lee, Byeong-Chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.83-101
    • /
    • 1992
  • A systematic method of remeshing is required due to severe mesh distortion after some finite deformation in the finite element analysis of practical forging processes. In order to cope with the problem of mesh degeneracy during deformation, the proper design of meshes plays an improtant role in the analysis. In so-called "Modular Remeshing", the physical characteristics of metal flow and geometric characteristics are incorporated in "Module", which can be applied to the mesh design for a certain mode of deformation in so far as the topology of deforming region remains the same. For the purpose of more effective and systematic use of the modular remeshing scheme, an expert system has been developed in the framework of the proposed remeshing schemel. In oredr to show the effectiveness of the method, the rib-web type forging with axial relief or radial relief and spike forging are simulated. It has been thus shown that the proposed method of automatic remeshing by using modular remeshing and expert system can be futher extended and applied to various forging problems with complicated geometrical configurations.ical configurations.

  • PDF