• Title/Summary/Keyword: Modular Network

Search Result 215, Processing Time 0.022 seconds

Modular Neural Network Using Recurrent Neural Network (궤환 신경회로망을 사용한 모듈라 네트워크)

  • 최우경;김성주;서재용;전흥태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1565-1568
    • /
    • 2003
  • In this paper, we propose modular network to solve difficult and complex problems that are seldom solved with multi-layer neural network. The structure of modular neural network in researched by Jacobs and Jordan is selected in this paper. Modular network consists of several expert networks and a gating network which is composed of single-layer neural network or multi-layer neural network. We propose modular network structure using recurrent neural network, since the state of the whole network at a particular time depends on an aggregate of previous states as well as on the current input. Finally, we show excellence of the proposed network compared with modular network.

  • PDF

Recurrent Based Modular Neural Network

  • Yon, Jung-Heum;Park, Woo-Kyung;Kim, Yong-Min;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.694-697
    • /
    • 2003
  • In this paper, we propose modular network to solve difficult and complex problems that are seldom solved with Multi-Layer Neural Network(MLNN). The structure of Modular Neural Network(MNN) in researched by Jacobs and jordan is selected in this paper. Modular network consists of several Expert Networks(EN) and a Gating Network(CN) which is composed of single-layer neural network(SLNN) or multi-layer neural network. We propose modular network structure using Recurrent Neural Network(RNN), since the state of the whole network at a particular time depends on aggregate of previous states as well as on the current input. Finally, we show excellence of the proposed network compared with modular network.

  • PDF

Optimal Structure of Wavelet Modular Wavelet Network Systems Using Genetic Algorithm (유전 알고리즘을 이용한 웨이브릿 모듈라 신경망의 최적 구조 설계)

  • 최영준;서재용;연정흠;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.115-118
    • /
    • 2000
  • In order to approximate a nonlinear function, modular wavelet networks combining wavelet theory and modular concept based on single layer neural network have been proposed as an alternative to conventional wavelet neural networks and kind of modular network. Modular wavelet networks provide better approximating performance than conventional one. In this paper, we propose an effective method to construct an optimal modualr wavelet network using genetic algorithm. This is verified through experimental results.

  • PDF

Optimal Structure of Modular Wavelet Network Using Genetic Algorithm (유전 알고리즘을 이용한 모듈라 웨이블릿 신경망의 최적 구조 설계)

  • Seo, Jae-Yong;Cho, Hyun-Chan;Kim, Yong-Taek;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.7-13
    • /
    • 2001
  • Modular wavelet neural network combining wavelet theory and modular concept based on single layer neural network have been proposed as an alternative to conventional wavelet neural network and kind of modular network. In this paper, an effective method to construct an optimal modular wavelet network is proposed using genetic algorithm. Genetic Algorithm is used to determine dilations and translations of wavelet basis functions of wavelet neural network in each module. We apply the proposed algorithm to approximation problem and evaluate the effectiveness of the proposed system and algorithm.

  • PDF

Mobile robot control by MNN using optimal EN (최적 EN를 사용한 MNN에 의한 Mobile Robot제어)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.186-191
    • /
    • 2003
  • Skills in tracing of the MR divide into following, approaching, avoiding and warning and so on. It is difficult to have all these skills learned as neural network. To make this up for, skills consisted of each module, and Mobile Robot was controlled by the output of module adequate for the situation. A mobile Robot was equipped multi-ultrasonic sensor and a USB Camera, which can be in place of human sense, and the measured environment information data is learned through Modular Neural Network. MNN consisted of optimal combination of activation function in the Expert Network and its structure seemed to improve learning time and errors. The Gating Network(GN) used to control output values of the MNN by switching for angle and speed of the robot. In the paper, EN of Modular Neural network was designed optimal combination. Traveling with a real MR was performed repeatedly to verity the usefulness of the MNN which was proposed in this paper. The robot was properly controlled and driven by the result value and the experimental is rewarded with good fruits.

Character Recognition of Vehicle Number Plate using Modular Neural Network (모듈라 신경망을 이용한 자동차 번호판 문자인식)

  • Park, Chang-Seok;Kim, Byeong-Man;Seo, Byung-Hoon;Lee, Kwang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.409-415
    • /
    • 2003
  • Recently, the modular learning are very popular and receive much attention for pattern classification. The modular learning method based on the "divide and conquer" strategy can not only solve the complex problems, but also reach a better result than a single classifier′s on the learning quality and speed. In the neural network area, some researches that take the modular learning approach also have been made to improve classification performance. In this paper, we propose a simple modular neural network for characters recognition of vehicle number plate and evaluate its performance on the clustering methods of feature vectors used in constructing subnetworks. We implement two clustering method, one is grouping similar feature vectors by K-means clustering algorithm, the other grouping unsimilar feature vectors by our proposed algorithm. The experiment result shows that our algorithm achieves much better performance.

Optimization of 3D target feature-map using modular mART neural network (모듈구조 mART 신경망을 이용한 3차원 표적 피쳐맵의 최적화)

  • 차진우;류충상;서춘원;김은수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.71-79
    • /
    • 1998
  • In this paper, we propose a new mART(modified ART) neural network by combining the winner neuron definition method of SOM(self-organizing map) and the real-time adaptive clustering function of ART(adaptive resonance theory) and construct it in a modular structure, for the purpose of organizing the feature maps of three dimensional targets. Being constructed in a modular structure, the proposed modular mART can effectively prevent the clusters from representing multiple classes and can be trained to organze two dimensional distortion invariant feature maps so as to recognize targets with three dimensional distortion. We also present the recognition result and self-organization perfdormance of the proposed modular mART neural network after carried out some experiments with 14 tank and fighter target models.

  • PDF

Optimal Structure Design of Modular Neural Network (모듈라 신경망의 최적구조 설계)

  • Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • Recently, the modular network was proposed in a way to keep the size of the neural network small. The modular network solves the problem by splitting it into sub-problems. In this aspect, fuzzy systems act in a similar way. However, in a fuzzy system, there must be an expert rule which separates the input space. To overcome this, fuzzy-neural network has been used. However, the number of fuzzy rules grows exponentially as the number of input variables grow. In this paper, we would like to solve the size problem of neural networks using modular network with the hierarchic structure. In the hierarchic structure, the output of precedent module affects only the THEN part of the rule. Finally, the rules become shorter being compared to the rule of fuzzy-neural system. Also, the relations between input and output could be understood more easily in the Proposed modular network and that makes design easier.

Adaptive Structure of Modular Wavelet Neural Network (모듈화된 웨이블렛 신경망의 적응 구조)

  • 서재용;김용택;김성현;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.247-250
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can constructs wavelet neural network according to one's intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristic of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Multiple Fault Diagnosis Method by Modular Artificial Neural Network (모듈신경망을 이용한 다중고장 진단기법)

  • 배용환;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF