• Title/Summary/Keyword: Modified soil

Search Result 690, Processing Time 0.024 seconds

Development of Appropriate Acid Digestion Method used for the Determination of Total Uranium in Soil by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) (유도결합플라즈마-질량분석기(ICP-MS)를 이용한 토양의 총 우라늄 정량에 요구되는 적정 산분해 전처리 방법 개발)

  • Shin, Gunhwan;Lee, Goontaek;Kang, Jiyoung;Yoon, Jungki;Kim, Hyunkoo;Noh, Hoejung;Kim, Jiin;Kim, Kyehoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.73-81
    • /
    • 2018
  • Inductively coupled plasma-mass spectrometry (ICP-MS), one of the most commonly used instruments for metal analysis, was used to determine total uranium in soil. The method was named as "Modified ASTM C1345-96". When comparing with ASTM C1345-96, digestion time (2~3 days) was shorten to 7 hours and the treatment in furnace was eliminated. In analyses of 26 field soil samples, there was a significant difference in the average concentration of total uranium between modified ASTM C1345-96 and ASTM C1345-96 (F : 6.22 > Fc : 4.03, significance level : 0.05, n=26). The average concentration of modified ASTM C1345-96 was 1.8 times larger than that of ASTM C1345-96. In addition, modified ASTM C1345-96 was compared with other acid digestion methods for soil including ISO 11466, Modified ISO 11466, US EPA-3051, US EPA-3051A and US EPA-3052 using a certificated reference material (SRM 2711a, NIST) and field soil samples with different level of organic matter content (1.6%, 5.8%, 10.6%). Modified ASTM C1345-96 showed the best accuracy of 93.01% for SRM 2711a. Also, modified ASTM C1345-96 showed the higher extraction rates than other digestion methods by 11~45%.

Lime Treatment of Waterworks Sludges for Soil Cover in Municipal Landfilling Site (석회처리에 의한 정수 슬러지의 복토재 활용에 관한 연구)

  • Lim, Sung-Jin;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2000
  • Water treatment processes produce sludges resulting from water clarification. Sludge production amount increases each year and its treatment and disposal is growing to social problems according to water demand increase. Water treatment plant sludges can be modified to soil cover in sanitary landfill site through the lime treatment. Compression strength of $1.0kg/cm^2$ or more is recommended for soil cover material in municipal landfilling site. Compression and shear strength properties of modified sludges showed material property improvement applicable for soil cover alternatives. Solidification effect of the modified sludge was observed through the scanning electron microscope. Extraction tests for hazardous components in sludges revealed that extraction levels of cadmium, copper, and lead were below the regulated criteria. When adding 10% calcium hydroxide to water treatment plant sludges, the modified sludges can reach material properties for cover soil after 28 days solidification reaction.

  • PDF

Application of DEM to Simulate Interaction between Soil and Tire Lug

  • Oida, A.;Ohkubo, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Using the modified DEM (Distinct Element Model), which we proposed, the effect of cross section of tire lug on the tire performance was simulated. Though the DEM has an advantage over the FEM when it is applied to simulate the behavior of discrete assembly of particles such as soil, there was still a problem in the case of conventional DEM, that the simulated movement of particles was too free. We constructed a new mechanical model (modified DEM) which can take account of the effect of adhesion between particles. It is shown that the soil deformation is simulated by the modified DEM better than the conventional DEM. Comparing the simulated soil reaction to the tire lug with the experimental results, the adequate DEM parameters were found. It is also indicated possible to find the effect of lug cross section shape on the tractive performance of tire by the DEM simulation.

  • PDF

Removal of Nitrate from Groundwater using Zero-valent Iron-modified Biochar (영가철 개질 바이오차를 이용한 지하수의 질산성 질소 제거)

  • Han, Eun-Yeong;Kim, Hye-Bin;Kim, Jong-Gook;Shin, Dong-Hun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2020
  • Nitrate released from chemical fertilizer, animal wastes, and synthetic detergents can cause methemoglobinemia to infants, thus the standard in drinking water is set to 10 mg/L as World Health Organization recommended. In this study, zero-valent iron-modified rice straw biochar was used to reduce and remove nitrate in the aqueous phase. The rice straw biochar was prepared by pyrolyzing the biomass at 700℃ for 3 hours, and the biochar was modified using 1 M Fe(III), and the Fe(III) on the biochar was reduced to zero-valent iron using sodium borohydride. The modified biochar removed nitrate effectively, which removed more than 91% of nitrate. For the synthetic groundwater, the nitrate removal was lowered to 82% due to the presence of other anions.

A Study on the Estimation of Zoysia matrella's Evaporation Using Makkink Model (인공지반에서 금잔디의 증발산량 예측에 관한 연구 -퍼라이트 배합토에서 Makkink의 일사법을 이용하여-)

  • 김도경;황지환
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.161-167
    • /
    • 2001
  • The purpose of this study is to find out the difference of Zoysia matrella's evaporation in between 100 percent soil and mixed soil with 50 percent of perlite to create green spaces on the artificial ground. It is believed that the weight against the artificial ground will be reduced, provided the vegetation is possible in the circumstance of the mixed sol with 50 percent of perlite. The study employed a modified Makkink's model by Iwasa who had developed the model for estimating Zoysia matrella's evaporation in the natural ground using the Makkink's formula in 1997 at Chiba University, Japan. The parameter of Makkink's formula is the solar radiation. For that reason, the Makkink's formula is simple and easy to measure the parameter and has a high utility. If the outcomes from mixed soil are close to modified Makkinks formula, the modified Makkink's formula will be applied to estimate in the artificial ground with mixed soil with 50 percent of perlite. Weather observation and actual amount of evaporation of Zoysia matrella have been measured, and the relation between weather condition and actual amount of evaporation had been also investigated. In line with this, we found out that there is a relevant relationship between daily average temperature, the modified Makkink's model by Iwasa, and the actual amount of evaporation. As the results of the experiment, the outcomes from mixed soil with 50 percent of perlite have very high relation to 100 percent soil. In addition, mixed soil has more adhesion with water than natural soil. However, it needs to be adequately maintained in terms of fertilization and damage from disease and harmful insects until the gras fastens its roots into the soil. By using mixed soil with 50 percent of perlite, the load from soil on the artificial ground can be reduced. The study on the growth of the grass throughout the plant vegetation and the actual amount of evaporation in the mixed soil with 50 percent of perlite should be performed in the future.

  • PDF

표면특성 변화에 따른 유류분해 미생물의 토양내 거동성 조절

  • 류두현;목지예;최상일;김용미;이경애
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.360-362
    • /
    • 2003
  • The adhesion of hydrocarbon degrading bacteria(HDB) differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was modified chemically and physiologically. Modified adhesion deficient mutant of HDB was selected in a soil column assay Physiologically and chemical modification increased cell surface hydrophobicity. Cell surface charcteristis including BATH and zeta potential were measured. Physiological modification using ampicillin was not stable, but chemical modification was stabel. Hydrocarbon degrading potential was measured for modified and unmodifed HDB.

  • PDF

유류분해 미생물의 표면특성에 따른 분해성 및 거동성 변화

  • 류두현;목지예;최명석;김진명;김동일;전경화;박소연
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.273-276
    • /
    • 2004
  • The adhesion of hydrocarbon degrading bacteria(HDB) differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was modified chemically and physiologically. Modified adhesion deficient mutant of HDB was selected in a soil column assay. Physiologically and chemical modification increased cell surface hydrophobicity. Cell surface characteristics including BATH and FTIR were measured. Physiological modification using ampicillin was not stable, but chemical modification was stable. Hydrocarbon degrading efficiency was measured of TPH modified and unmodifed HDB.

  • PDF

Effects of Disease Resistant Genetically Modified Rice on Soil Microbial Community Structure According to Growth Stage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Jae-Hyung;Kang, Hyeon-jung;Cho, Woo-Suk;Cho, Yoonsung;Lee, Bum Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • BACKGROUND: This study investigated the effects of rice genetically modified to be resistant against rice blast and rice bacterial blight on the soil microbial community. A comparative analysis of the effects of rice genetically modified rice choline kinase (OsCK1) gene for disease resistance (GM rice) and the Nakdong parental cultivar (non-GM rice) on the soil microbial community at each stage was conducted using rhizosphere soil of the OsCK1 and Nakdong rice. METHODS AND RESULTS: The soil chemistry at each growth stage and the bacterial and fungal population densities were analyzed. Soil DNA was extracted from the samples, and the microbial community structures of the two soils were analyzed by pyrosequencing. No significant differences were observed in the soil chemistry and microbial population density between the two soils. The taxonomic analysis showed that Chloroflexi, Proteobacteria, Firmicutes, Actinobacteria, and Acidobacteria were present in all soils as the major phyla. Although the source tracking analysis per phylogenetic rank revealed that there were differences in the bacteria between the GM and non-GM soil as well as among the cultivation stages, the GM and non-GM soil were grouped according to the growth stages in the UPGMA dendrogram analysis. CONCLUSION: The difference in bacterial distributions between Nakdong and OsCK1 rice soils at each phylogenetic level detected in microbial community analysis by pyrosequencing may be due to the genetic modification done on GM rice or due to heterogeneity of the soil environment. In order to clarify this, it is necessary to analyze changes in root exudates along with the expression of transgene. A more detailed study involving additional multilateral soil analyses is required.

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas;Ayse T. Daloglua
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.273-285
    • /
    • 2023
  • This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.

Estimation of Rainfall Erosivity in North Korea using Modified Institute of Agricultural Sciences (수정 IAS 지수를 이용한 북한지역의 강우침식인자 추정)

  • Lee, Joon-Hak;Heo, Jun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1004-1009
    • /
    • 2011
  • Soil erosion in North Korea has been continued to accelerate by deterioration of topographical conditions. However, few studies have been conducted to predict the amount of soil loss in North Korea due to limited data so far. Rainfall erosivity is an important factor to predict the amount of long-term annual soil loss by USLE (universal soil loss equation). The purpose of this study is to investigate rainfall erosivity, which presented the potential risk of soil erosion by water, in North Korea. Annual rainfall erosivities for 27 stations in North Korea for 1983~2010 were calculated using regression models based on modified Institute of Agricultural Sciences (IAS) index in this study. The result showed that annual average rainfall erosivity in North Korea ranged from 2,249 to 7,526 and averaged value was $4,947MJmm\;ha^{-1}\;hr^{-1}\;yr^{-1}$, which corresponded to about 70% of annual average rainfall erosivity in South Korea. The finding was that the potential risk of soil erosion in North Korea has been accelerated by the increase of rainfall erosivity since the late 1990s.