• Title/Summary/Keyword: Modified silo theory

Search Result 4, Processing Time 0.019 seconds

Behavior of Retaining wall near Rigid slopes (강성사면에 인접한 옹벽의 거동에 관한 연구)

  • Yoo, Nam-Jae;Lee, Myoung-Woog;Park, Byoung-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.405-415
    • /
    • 1998
  • This thesis is an experimental and numerical research on bearing capacity acting retaining walls close to rigid slopes with stiff angles. Experiments were performed with changing the roughness of adjacent slope to the wall, its inclination, distance between wall and slope. Vertical stress and applied surcharge loads were measured by miniature earth cells and a load cel respectively. Stress distribution Vertical Settlement of surcharge load of rigid model footing were measured by LVDTs. Bearing capacities of surcharge loads were compared with theoretical estimations by using several different methods of limit equilibrium and numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung sung gyo and Chung in gyo (1994) were used to analyze test results Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the stress distributions acting in the backfill and to compare with test results. From results of surcharge test with model wall being very close to the slope, analyzed results by the modified silo theory and to be in the better agreements than other methods.

  • PDF

Lateral Pressure on Retaining Wall Close to Stable Slope (안정사면에 인접한 옹벽에 작용하는 수평토압)

  • Jeong, Seong-Gyo;Jeong, Jin-Gyo;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.19-34
    • /
    • 1997
  • Classical earth pressure theories normally assume that ground condition remains uniform for considerable distance from the wall, and that the movement of the wall is enough to result in the development of an active pressure distribution. In the case of many low gravity walls in cut, constructed, for example, by using gabions or cribs, this is not commonly the case. In strong ground a steep temporary face will be excavated for reasons of economy, and a thin wedge of backfill will be placed behind the wall following its construetion. A designer then has the difficulty of selecting appropriate soil parameters and a reasonable method of calculating the earth pressure on the w리1. This paper starts by reviewing the existing solutions applicable to such geometry. A new silo and a wedge methods are developed for static and dynamic cases, and the results obtained from these are compared with two experimental results which more correctly mod el the geometry and strength of the wall, the fill, and the soil condition. Conclusions are drawn concerning both the magnitute and distribution of earth pressures to be supported by such walls.

  • PDF

A Study on Effect of Earth Pressure Reduction and the Silo Earth Pressure of the Retaining Wall by CLSM Backfill with Waste Foundry Sand (폐주물사를 이용한 유동성 채움재의 절토구간 옹벽 뒤채움시 사일로토압 및 토압경감효과 연구)

  • Cho, Jae-Yun;Lee, Kwan-Ho;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.19-31
    • /
    • 2002
  • The recycling of waste foundry sand(WFS) and fly ash as by-products of industry is one of the urgent problem to deal with. For the recycling of these materials, CLSM(controlled low strength materials) concept was adopted. This research has been done for last three years. In this research, couple of selected waste foundry sand and fly ash were used as fine aggregate. Also, WFS modified by Proper chemical liquid was used for the comparison. The main focus is to evaluate the silo earth pressure and the reduction effect due to the use of CLSM instead of normal fine aggregate. Silo effect, which occurs at short distance between retaining wall and backfill, was not detected because the characterization of CLSM is highly different from that of normal aggregate. Therefore, the theory for earth pressure, like Rankine theory or Coulomb theory, should be carefully used for CLSM. The reduction of earth pressure for modified WFS is higher than the others. But, the final earth pressure is converged at very small value, even though the reduction effect depends on the curing time.

  • PDF

Distribution of Vertical Earth Pressure due to Surcharge Loads Acting on Cantilever Retaining Wall Near Rigid Slope (강성경사면에 인접한 역T형 옹벽에 작용하는 상재하중에 의한 연직토압분포)

  • 유남재;이명욱;박병수;홍영길
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.141-152
    • /
    • 2002
  • This paper is the result of the experimental and numerical research on the distribution of vertical earth pressure due to surcharge loads acting on cantilever retaining wall close to a rigid slope with a stiff angle. Centrifuge model experiments were performed with changing the roughness of adjacent slope to the wall, distance between the wall and the slope and gravitational levels. Vertical earth pressures were measured by earth cells embedded in the backfill of the wall. Test results of vertical earth pressures due to surcharge loads were compared with theoretical estimations by using two different methods of limit equilibrium and the numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung(1993, 1997), were used to analyze test results. Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the vertical stress distributions acting on the backfill. FLAC with the hyperbolic constitutive model was also used for the numerical estimation. As a result of comparison of test results with theoretical and numerical estimations, distribution of vertical earth pressures obtained from centrifuge model tests is generally in good agreement with numerical estmated values by using FLAC whereas the wedge theory shows values close to test results in case the distance between the wall and the slope is narrow.