• Title/Summary/Keyword: Modified silica

Search Result 258, Processing Time 0.025 seconds

Histopathological Changes in Rat Lung Instilled with Natural Coal and Free Silica Dust (자연산석탄분진 및 유리규산분진 주입에 따른 흰쥐 폐에서의 병리조직학적 변화)

  • Kim, Kyung-Ah;Jung, Chang-Young;Oh, Sang-Young;Yim, Hyeon-Woo;Lim, Young;Yun, Im-Goung;Roh, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.2
    • /
    • pp.131-140
    • /
    • 1992
  • In order to investigate the changes of hydroxyproline amount and pathologic finding in rat lung which were instilled the natural coal and free silica dust intratracheally, the subjects were divided into two groups as follows. The control group was only administered intratracheally 0.5 ml of normal saline, and the experimental groups were instilled at once the turbid solution containing 10 mg, 30 mg and 50 mg of natural coal and free silica dust each, subjects were sacrified at the 3rd and the 20th week each after the experiment. Hydroxyproline amount in the right upper lung was measured by Woessner method and HPLC (modified Dunphy) method, and the pathlogic finding of lung tissue were observed for hematoxylin-eosin staining, Bielschowski method and Masson's trichrome method. The results were as follows. 1) The wet lung weights of all experimental groups excluding in the groups instilled 10 mg and 30 mg of natural coal dust at 3rd week, were significantly increased (p<0.05) compared with control group. The weight in each free silica group was markedly increased (p<0.05) at 20th week compared with the same dose of natural coal dust group, while the weight in the same dose group of free silica dust was increased significantly at 20th week compared with at 3rd week. 2) The amount of hydroxyproline were significantly increased (p<0.05) in the natural coal and free silica groups at 20th week compared with the control groups, and in each experimental group instilled the same kind and dose of dust, its amount was markedly increased (p<0.05) at 20th week compared with at 3rd week. And also the hydroxyproline in 30 mg and 50 mg free silica groups increased markedly (p<0.05) at 20th week compared with the natural coal dust of the same dose. 3) The polymorphonuclear leukocytes, fibroblasts and macrophages in interstitium and alveolar space showed the increasing tendency in the free silica group more markedly than in the natural coal dust group. The exudate in alveolar space at 3rd week was disappeared at 20th week, and pneumoconiotic nodules observed microscopically in all experimental groups at 20th week, while the nodules apeared already at 3rd week in the 30 mg and 50 mg free silica dust groups. The significant increase of Hydroxyproline content in lung tissue and pneumoconiotic nodule formation in experimental groups found in this study indicate that the observation period, dust amount and kind of dust is important factors associated with pneumoconiosis. And these findings were generally more severe in free silica dust groups than in natural coal groups.

  • PDF

BONDING BETWEEN RESIN AND CERAMICS (레진과 치과용 도재의 접착)

  • Kim, Sun-Jai;Lee, Keun-Woo;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.159-168
    • /
    • 2007
  • Statement of problem: Literature showed different results on the durability of bonded ceramic restoration. Purpose: The purpose of this article is to review the effect of surface treatment of ceramics in resin-ceramic bond to get predictable results. Material and method: PubMed data base was utilized to search the articles which were written in English and published in 1986 and 2006. Some electronic published articles which are forthcoming to publish in paper were also included for this review. This review article focused on the effect of acid etching and silane application on the silica based ceramics. The durability of resin-ceramic bonding, the methodology for bond strength test and resin bonding to alumina or zirconia based ceramics were compared in brief at the end of the review. Results and Conclusion: the effect of silane application can be influenced by the contaminations of saliva or solutions. Micromechanical retention by acid etching as well as silane application plays an important role in initial and durable bond strength between resin and ceramic. The use of phosphate modified resin cement following tribochemical silica coating and silane application produced best bond strength for alumina or zirconia based ceramics.

Self-healing Anticorrosion Coatings for Gas Pipelines and Storage Tanks

  • Luckachan, G.E.;Mittal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.209-216
    • /
    • 2016
  • In the present study, chitosan based self-healing anticorrosion coatings were prepared by layer by layer (lbl) addition of chitosan (Ch) and polyvinyl butyral (PVB) on mild carbon steel substrate. Chitosan coatings exhibited enhanced coating stability and corrosion resistance in aggressive environments by the application of a PVB top layer. Chitosan layer in the lbl coatings have been modified by using glutaraldehyde (Glu) and silica ($SiO_2$). Performance of different coatings was tested using electrochemical impedance spectroscopy and immersion test. The best anticorrosion performance was observed in case of 10 % Ch_$SiO_2$_PVB coatings, which withstand immersion test over 25 days in 0.5 M salt solution without visible corrosion. 10 % Ch_$SiO_2$ coatings without the PVB top layer didn't last more than 3days. Application of PVB top layer sealed the defects in the chitosan pre-layer and improved its hydrophobic nature as well. Raman spectra and SEM of steel surfaces after corrosion study and removal of PVB_Ch/Glu_PVB coatings showed a passive layer of iron oxide, attributing to the self-healing nature of these coatings. Conducting particle like graphene reinforcement of chitosan in the lbl coatings enhanced corrosion resistance of chitosan coatings.

An empirical relationship for compressive strength of preplaced aggregate concrete with modified binder

  • Kunal Krishna Das;Eddie Siu-Shu Lam;Jeong Gook Jang
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.545-559
    • /
    • 2023
  • In this study, an experimental investigation was conducted to assess the influence of ground granulated blast furnace slag (GGBS) and silica fume (SF) on the fresh and hardened properties of grout specimens and preplaced aggregate concrete (PAC). Grout proportions were optimized statistically using a factorial design and were applied to 10 mm and 20 mm coarse aggregates to produce PAC. The results demonstrate that GGBS has a more significant effect on the compressive strength of grout compared to SF, with a small increase or decrease in the GGBS content having a greater influence on the compressive strength of grout than SF. The water to binder ratio had the most significant effect on the compressive strength of PAC, followed by the coarse aggregate size and sand to binder ratio. An empirical relationship to predict the compressive strength of PAC was proposed through an experimentally derived factorial design along with a statistical analysis of collectively obtained data and a deep literature review. The results predicted by the empirical relationship were in good agreement with those of PAC produced for verification.

Preparation of Transparent Organic-Inorganic Hybrid Hard Coating Films and Physical Properties by the Content of SiO2 or ZrO2 in Their Films (투명 유-무기 하이브리드 하드코팅 필름 제조 및 SiO2 또는 ZrO2함량에 따른 필름의 물성)

  • Seol, Hyun Tae;Na, Ho Seong;Kwon, Dong Joo;Kim, Jung Sup;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Transparent organic-inorganic hybrid hard coating films were prepared by the addition of $SiO_2$ or $ZrO_2$, as an inorganic filler to improve the hardness property, filler was highly dispersed in the acrylic resin. To improve the compatibility in the acrylic resin, $SiO_2$ or $ZrO_2$ is surface-modified using various silanes with variation of the modification time and silane content. Depending on the content and kind of the modified inorganic oxide, transparent modified inorganic sols were formulated in acryl resin. Then, the sols were bar coated and cured on PET films to investigate the optical and mechanical properties. The optimized film, which has a modified $ZrO_2$ content of 4 wt% markedly improved in terms of the hardness, haze, and transparency as compared to neat acrylate resin and acrylate resin containing modified $SiO_2$ content of 8 wt%. Meanwhile, the low transparency and high haze of these films slowly appeared at $SiO_2$ content above 10 wt% and $ZrO_2$ content of 5 wt%, but the hardness values were maintained at 2H and 3H, respectively, in comparison with the HB of neat acrylate resin.

Kinetics of Silica Sorption and Desorption in Soil as affected by pH and Temperature (pH 와 온도(溫度)에 따른 토양(土壤)의 규산(硅酸) 흡(吸) · 탈착(脫着)에 대(對)한 역학적(力學的) 연구(硏究))

  • Lee, Sang-Eun;Neue, Heins Ulitz
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.342-356
    • /
    • 1992
  • Kinetic studies using stirred-flow methods were conducted with the Luisiana soil at three pH levels(pH 5, 6.5, and 8) and three temperature levels(10, 25, and $40^{\circ}C$) to explore effects on the rate of silica retention and release and to find out reaction mechanisms. In this study the maximum silica retention could not be obtained for long enough experimental time. The silica sorption isorption was C type fitted well to Freundlich equation. The pH of the soil suspension increased by the silica release process at low pH treatments(pH 5 and 6.5), while decreased at high pH treatment(pH 8). From the above findings It can be deduced that the mechanism of silica retention is a multilayer forming process to change the ligand form depending on pH condition. In the proposed mechanism the sorbed silica provide new binding sites for additional sorption of silica, while the activation energy for the formation of subsequent layers increases correspondingly. The silica retention and release process were well described by first-order and parabolic diffusion equation. However, clear interpretation for silica sorption mechanism using these equations could not be made. The validity of the fraction term (Fa and Fd) included in first-order and parabolic diffusion equation requires further examinations because the temperature effect on apparent rate constant shows no constant trends among temperature treatments, while there was a good trend in Elovich and modified Freundlich equation where the fraction term was not included.

  • PDF

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.

Long-term and Short-term AC Treeing Breakdown of Epoxy/Micro-Silica/Nano-Silicate Composite in Needle-Plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.252-255
    • /
    • 2012
  • In order to characterize insulation properties of epoxy/micro-silica/nano-silicate composite (EMNC), long-term and short-term AC treeing tests were carried out undr non-uniform electric field generated between needle-plate electrodes. In a long-term test, a 10 kV (60 Hz) electrical field was applied to the specimen positioned between the electrodes with a distance of 2.7 mm in an insulating oil bath at $30^{\circ}C$, and a typical branch type electrical tree was observed in the neat epoxy resin and breakdown took place at 1,042 min after applying the 10 kVelectrical field. Meanwhile, the spherical tree with the tree length of $237{\mu}m$ was seen in EMNC-65-0.3 at 52,380 min (36.4 day) and then the test was stopped because the tree propagation rate was too low. In the short-term test, an electrial field was applied to a 3.5 mm-thick specimen at an increasing voltage rate of 0.5 kV/s until breakdown in insulating oil bath at $30^{\circ}C$ and $130^{\circ}C$, and the data was estimated by Weibull statistical analysis. The electrical insulation breakdown strength for neat epoxy resin was 1,763 kV/mm at $30^{\circ}C$, while that for EMNC-65-0.3 was 2,604 kV/mm, which was a modified value of 47%. As was expected, the breakdown strength decreased at higher test temperatures.

A Study on the effect of TEOS film by Dispel8ion Time and Content of $CeO_2$ Abrasive (DSS에서 $CeO_2$ 연마제의 첨가량과 분산시간이 TEOS 막에 미치는 특성연구)

  • Seo, Yong-Jin;Han, Sang-Jun;Park, Sung-Woo;Lee, Young-Kyun;Lee, Sung-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.487-487
    • /
    • 2009
  • One of the critical consumables in chemical mechanical polishing (CMP) is a specialized solution or slurry, which typically contains both abrasives and chemicals acting together to planarize films. In single abrasive slurry (SAS), the solid phase consists of only one type of abrasive particle. On the other hand, mixed abrasive slurry (MAS) consists of a mixture of at least two types of abrasive particles. In this paper, we have studied the CMP characteristics of mixed abrasive slurry (MAS) retreated by adding of $CeO_2$ abrasives within 1:10 diluted silica slurry (DSS). The slurry designed for optimal performance should produce reasonable removal rates, acceptable polishing selectivity with respect to the underlying layer, low surface defects after polishing, and good slurry stability. The modified abrasives in MAS are evaluated with respect to their particle size distribution, surface morphology, and CMP performances such as removal rate and non-uniformity. As an experimental result, we obtained the comparable slurry characteristics compared with original silica slurry in the viewpoint of high removal rate and low non-uniformity.

  • PDF

Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend

  • Mala, Kanchan;Mullick, A.K.;Jain, K.K.;Singh, P.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.239-249
    • /
    • 2013
  • In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of OPC and different mineral admixtures, is the judicious choice for the construction industry. Silica fume (SF) and fly ash (FA) are the most commonly used mineral admixtures in ternary blend cement systems. Synergy between the contributions of both on the mechanical properties of the concrete is an important factor. This study reports the effect of replacement of OPC by fly ash (20, 30, 40 and 50 % replacement of OPC) and/or silica fume (7 and 10 %) on the mechanical properties of concrete like compressive strength and split tensile strength, with three different w/b ratio of 0.3, 0.4 and 0.45. The results indicate that, as the total replacement level of OPC in concrete using ternary blend of OPC + FA + SF increases, the strength with respect to control mix increases up to certain replacement level and thereafter decreases. If the cement content of control mixes at each w/b ratio is kept constant, then as w/b ratio decreases, higher percentage of OPC can be replaced with FA + SF to get 28 days strength comparable to the control mix. A new method was proposed to find the efficiency factor of SF and FA individually in ternary blend cement system, based on principle of modified Bolomey's equation for predicting compressive strength of concrete using binary blend cement system. Efficiency factor for SF and FA were always higher in ternary blend cement system than their respective binary blend cement system. Split tensile strength of concrete using binary and ternary cement system were higher than OPC for a given compressive strength level.