• 제목/요약/키워드: Modified impulse model

검색결과 16건 처리시간 0.018초

하드디스크 슬라이더의 동적수치해석 (A Dynamic Simulation of the Slider in HDD)

  • 김도완;임윤철
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.295-301
    • /
    • 2000
  • The dynamic simulation of slider in hard disk drive is performed using Factored Implicit Finite Difference method. The modified Reynolds equation with Fukui and Kaneko model is employed as a governing equation. Equations of motion for the slider of three degrees of freedom are solved simultaneously with the modified Reynolds equation. The transient responses of the slider for disk step bumps and slider impulse forces are shown for various cases and are compared for the iteration algorithm and new algorithm.

하드디스크 슬라이더의 동적수치해석 (A Numerical Dynamic Simulation of the Slider in HDD)

  • 김도완;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.146-153
    • /
    • 1999
  • A numerical dynamic simulation is necessary to investigate the capacity of the HDD. The slider surface become more and more complicated to make the magnetized area smaller and readback signal stronger. So a numerical dynamic simulation must be preceded to develop a new slider in HDD. The dynamic simulations of air-lubricated slider bearing have been peformed using FIFD(Factored Implicit Finite Difference) method. The governing equation, Reynolds equation Is modified with Fukui and Kaneko model(FK model) which includes the first and the second-order slip. The equations of motion for the slider bearing are solved simultaneously with the modified Reynolds equation for the case of three degrees of freedom. The slider transient response for disk step bump and slider impulse force is given for various case and for iteration algorithm and new algorithm.

  • PDF

실내 다중경로 무선채널의 IR-UWB 시스템에서 레이크 수신기의 성능 분석 (Performance Analysis of RAKE Receivers for IR-UWB Systems in Indoor Multipath Radio Channel)

  • 김은철;윤병완;양재수;김진영
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.253-256
    • /
    • 2008
  • In this paper, we analyze the performance of RAKE receiver for impulse radio-ultra wide band (IR-UWB) systems in indoor multipath radio channel. Pulse position modulation-time hopping (PPM-TH) signal is considered. And we also consider three types of RAKE receivers, which are ideal RAKE, selective RAKE, and partial RAKE receivers. The indoor channel is modeled as the modified Saleh and Valenzuela (SV) model which has been proposed as a UWB channel model by the IEEE group, IEEE 802.15.SG3a.

  • PDF

123°LiNbO3 기판을 이용한 기울인 빗살변환기 구조의 70MHz IF 필터 구현 (Implementation of 70MHz IF Filter with Slanted Finger IDTs on 123°LiNbO3 Substrates)

  • 이택주;정덕진
    • 한국전기전자재료학회논문지
    • /
    • 제15권4호
    • /
    • pp.325-331
    • /
    • 2002
  • In this paper, surface acoustic wave(SAW) bandpass filters using slanted finger interdigital electrode transducers(IDTs) are investigated. The slanted finger IDTs are used to design SAW filters with good shape factor, a flat passband, and good out-of-band rejection characteristic. For the filter design, input-output IDT structure was simulated with modified impulse model; uniform-withdrawal weighting IDTs, withdrawal-withdrawal weighting IDTs. SAW filters of uniform-withdrawal weighting IDTs structure were designed and fabricated on $128^{\circ}LiNbO_3$ piezoelectric substrates. Implemented SAW filter has a fractional bandwidth of 30%, center frequency of 70MHz and shape factor of $1.12\pm0.01$.

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.

변형된 창함수를 사용한 FIR 디지털 필터에 관한 연구 (A Study on the FIR Digital Filter using Modified Window Function)

  • 강경덕;배상범;김남호;류지구
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.49-55
    • /
    • 2003
  • 현대산업사회의 발전에 따라 신호처리 분야 중 디지털필터의 사용은 급격히 증가하고 있으며, 특히 디지털 영상처리, 디지털 음성처리, CATV 및 각종 통신 분야 등에서 카메라의 Detail processor, Y/C separator, Ghost제거 필터, 표준변환기(NTSC-PAL), Noise reducer 등으로 많이 사용되고 있다. 이러한 디지털필터에는 일반적으로 IIR(infinite impulse response)과 FIR(finite impulse response) 필터가 있으며, 본 논문에서는 구현이 용이하고 선형위상특성을 갖는 FIR 디지털필터를 설계하였다. FIR 디지털필터 설계에 있어서 통과대역의 차단주파수 부근에서 깁스(gibbs) 현상에 의해 생긴 리플을 완화하기 위해 window함수를 사용한다. 그러나, 기존의 window는 고정된 값으로 되어 있으므로 설계목적에 적합한 window함수를 선택함에 있어 다소 문제점이 있다. 따라서, 본 논문에서는 설계목적에 따라 서 융통성있게 선택이 가능한 파라메터를 부가한 변형된 Hanning window를 설계하였으며, 타당성을 입증하기 위해 디지털필터를 설계하여 기존의 Hamming, Hanning, Blackman, Kaiser window와 비교하였으며, 판단기준으로 peak side-lobe와 천이특성 등을 사용하였다.

  • PDF

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

Wave propagation in a microbeam based on the modified couple stress theory

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제46권3호
    • /
    • pp.417-431
    • /
    • 2013
  • This paper presents responses of the free end of a cantilever micro beam under the effect of an impact force based on the modified couple stress theory. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the difference of the modified couple stress theory and the classical beam theory is investigated for the wave propagation. A few of the obtained results are compared with the previously published results. The influences of the material length scale parameter on the wave propagation are investigated in detail. It is clearly seen from the results that the classical beam theory based on the modified couple stress theory must be used instead of the classical theory for small values of beam height.

다공탄성체 척추운동분절 유한요소 모델에서 추간판의 변성이 충격 거동에 미치는 영향 해석 (Analysis of Impact Response in a Poroelastic Spinal Motion Segment FE Model according to the Disc Degeneration)

  • 김영은;박덕용
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.188-193
    • /
    • 2003
  • To predict changes in biomechanical parameters such as intradiscal pressure, and the shock absorbing mechanism in the spinal motion segment under different impact duration/loading rates, a three dimensional L3/L4 motion segment finite element model was modified to incorporate the poroelastic properties of the motion segment. The results were analyzed under variable impact duration for normal and degenerated discs. For short impact duration and a given maximum compressive force, relatively high cancellous pore pressure was generated as compared with a case of long impact duration, although the amount of impulse was increased. In contrast relatively constant pore pressure was generated in the nucleus. Disc degeneration increased pore pressure in the disc and decreased pore pressure in the cancellous core, which is more vulnerable to compressive fracture compared with intact case.

Inelastic two-degree-of-freedom model for roof frame under airblast loading

  • Park, Jong Yil;Krauthammer, Theodor
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.321-335
    • /
    • 2009
  • When a roof frame is subjected to the airblast loading, the conventional way to analyze the damage of the frame or design the frame is to use single degree of freedom (SDOF) model. Although a roof frame consists of beams and girders, a typical SDOF analysis can be conducted only separately for each component. Thus, the rigid body motion of beams by deflections of supporting girders can not be easily considered. Neglecting the beam-girder interaction in the SDOF analysis may cause serious inaccuracies in the response values in both Pressure-Impulse curve (P-I) and Charge Weight-Standoff Diagrams (CWSD). In this paper, an inelastic two degrees of freedom (TDOF) model is developed, based on force equilibrium equations, to consider beam-girder interaction, and to assess if the modified SDOF analysis can be a reasonable design approach.