• Title/Summary/Keyword: Modified SBR

Search Result 64, Processing Time 0.027 seconds

A Study in Application and Manufacture Technique of Cold-Mix Cold-Laid Type Asphalt Concrete Using of Polymer Modified Asphal (개질 아스팔트를 이용한 상온아스콘 제조 및 실용화 연구)

  • 김영근;남궁연;박유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.627-634
    • /
    • 1997
  • This is the Study on Application and Manufacture Technique of Cold-Mix, Cold-Laid type Asphalt Concrete using of Polymer modified asphalt the could be constructed easily and economically on damaged road repaireless for seasons. The modified materials for this study are SBS(Styrene-Butadiene-Styrene). SBR (Styrene-Butadiene-Rubber) and PUR(Polyurethane). The Marshall stability and the value of flow and resistance in water stability degree according to the alternation types and weight percent of modified materials were compared and evaluated on this study. The results of the study show that PUR modified asphalt have improvement of over 150% Marshall stability in AI MS-14 standard and they are evaluated to have the easiness of storage and better working efficiency compared with other types of modified asphalt compound.

  • PDF

Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds

  • Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • Wet masterbatch (WMB) technology is studied to develop high-content and highly disperse silica-filled compounds. This technology refers to the solidification of surface-modified silica with a rubber solution or latex. Until now, researchs based on styrene butadiene rubber (SBR)/silica WMB has been mainly performed. However, the blending of SBR/silica WMB and BR is not known and is currently under research and development. Therefore, in this study, the BR blending method suitable for emulsion (ESBR)/silica WMB is investigated by measuring their cure characteristics and the mechanical and dynamic viscoelastic properties. As a result, it was confirmed that the blending of ESBR/silica WMB and BR/silica dry masterbatch is most appropriate. However, it showed a disadvantage compared with the conventional mixing method, which was due to the surfactant remained and the sulfuric acid used as the coagulant.

Modified Silica with Cellulose/Starch by Gel-Adsorption Method as Reinforcing Materials for SBR Latex

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Styrene-butadiene Rubber (SBR) Latex composites, incorporated with cellulose/starch-silica hybrids synthesized by gel-adsorption method, were filled into rubber by the latex compounding method. The structure morphology, mechanical properties, and thermodynamic properties of gel-silica hybrids were characterized. The states of hybrids which used as fillers were also characterized by SEM. As the fillers ratio increased, the difference for storage modulus of samples had been morphology by rubber process analyzer (RPA). Then, as more fillers ratio was filled into the matrix, the best tensile strength result, and the largest modulus value were also proved by UTM and RPA. As for thermal stability, increase in the ratio of fillers led to higher initial decomposition temperature, which was also proved by TGA. The swelling ratio of samples has also been characterized. From the results of all the tests, cellulose-silica hybrid showed the best results as a filler, and the best filling ratio of this hybrid is about 10 phr, which has the best storage modulus and great tensile strength.

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Development of Polymer-Modified Cementitious Self-Leveling Materials for Thin Coat

  • Kim, Wan-Ki;Do, Jeong-Yun;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.58-66
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top coat with thin thickness, typically 5~15mm. The purpose of this study is to evaluate basic properties of self-leveling materials using polymer dispersions as kinds of SBR, PAE, St/BA with thin coat (under 3mm). Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as to facilitate the workability required. The self-leveling materials using four types of polymer dispersion are prepared with polymer-cement ratio which respectively range from 50% and 75%, and tested for basic characteristics such as unit weight, air content, flow, consistency change and adhesion in tension. From the test results, the self-leveling materials using PAE emulsion at curing age of 28days are almost equal to those of conventional floor using urethane and epoxy resin. The adhesion in tension of self-leveling mortars using SBR latex and PAE emulsion at curing age of 3days is over 17 kgf/cm$^2$(1.67MPa). Consistency change is strongly dependent on the type of polymer dispersion. It is concluded that the self-leveling materials using polymer dispersions can be used in the same manner as conventional floor using thermosetting resin in practical applications, in the selection of polymer dispersions.

  • PDF

Properties of Carbon Black/SBR Rubber Composites Filled by Surface Modified Carbon Blacks

  • Dai, Shuang-Ye;Ao, Ge-You;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • Properties of carbon blacks and carbon black/SBR rubber composites filled by surface modified carbon blacks were examined. Although the specific surface area of carbon blacks increased after the surface modifications with heat, acid, and base, there were no obvious changes in resistivity. The composites filled by heat treated carbon blacks showed a higher tensile strength and elongation than those filled by raw blacks. The acid and base treated carbon blacks filled composites also showed higher tensile strength but similar elongation values with those filled by raw blacks. With increasing loading ratio, both tensile strength and elongation increased, and appeared a maximum value at 30-40 phr. Modulus at 300% strain remained increasing with further loading of carbon blacks. At the same loading, the heat treated black filled composites showed similar modulus values with composites filled by raw blacks but for base and acid treated black filled composites much higher values were obtained. After the surface modification, the functional groups which played an important role in reinforcement action were changed.

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder (재유화형 폴리머 분말을 사용한 폴리머-시멘트 모르타르의 내구성)

  • Yeon, Kyu-Seok;Joo, Myung-Ki;Jeong, Jung-Ho;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.537-540
    • /
    • 2005
  • Durability of the polymer-modified mortars using the redispersible SBR and PAE powder-modified mortars were experimentally investigated. Results of a previous study were used to determine the mix proportion that optimized the strength, and the freezing-thawing resistence, the carbonation depth and the chloride intrusion depth of the mortar for various polymer-cement ratios were studied. After 300 freezing-thawing cycles, the rate of weight reduction decreased from 7 to below 2 $\%$ as the polymer-cement ratios increased from 0 to 15 $\%$, and, on the 150 cycle basis, durability index increased from 60 to 98. Carbonation depth decreased from initial value of 5.5 to about 2.5 mm and chloride intrusion depth did from 3.5 to 1.5 mm

  • PDF

Estimation of Air Void System and Permeability of Latex-Modified Concretes by Image Analysis Method (화상분석법을 이용한 라텍스개질 콘크리트의 공극 구조와 투수성의 상관성 분석)

  • Jeong Won-Kyong;Yun Kyong-Ku;Hong Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.695-702
    • /
    • 2005
  • It is known that latex-modified concretes were increased their durability and permeability by added latex. The purpose of this study was to analysis the air void systems in latex-modified concretes using a reasonable and objective image analysis method with main experimental variables such as water-cement ratios, latex contents(0%, 15%) and cement types(ordinary portland cement, high-early strength cement and very-early strength cement). The results are analyzed spacing factor, air volume after hardened, air distribution and structure. Also, air void systems and permeability of latex-modified concretes were compared with correlation. The results are as follows; The same w/c ratio LMC showed better air entraining effect than OPC with AE water reducer. The VES-LMC showed that the number of entrained air below $100{\mu}m$ increased more than four times. In the HES-LMC, micro entraining air having range from 50 to $500{\mu}m$ increased above 7 times without antifoamer. Though spacing factor was measured low, latex-modified concretes were showed that permeability was good. It is considered that air void system does not have an effect on the property of latex-modified concretes but latex film is more influenced in the their durability.

Development of Polymer-Concrete Composite(I) - Physical Properties of Polymer-Cement Concrete Composites - (폴리머-콘크리트 복합재료 개발(I) - 폴리머-시멘트 콘크리트의 물성 -)

  • Hwang, Eui-Hwan;Kil, Deog-Soo;Oh, In-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.979-984
    • /
    • 1997
  • Test specimens of polymer-cement concrete composites were prepared using styrene-butadiene rubber(SBR) latex, ethylenevinyl acetate(EVA) and polyacrylic ester(PAE) emulsions as polymer dispersions in cement modified system at constant slump($10{\pm}0.5cm$), then compressive and flexural strengths water absorption, pore size distribution, and microstructures were investigated. Compressive and flexural strengths of these composites were remarkably improved with an increase of polymer-cement ratio. These composites had a desirable pore size distribution against frost damage due to a small capillary pore volume. Continuous polymer film was able to form in higher than 15% of polymer cement ratio.

  • PDF