• Title/Summary/Keyword: Modified Rate of Return

Search Result 29, Processing Time 0.023 seconds

Modified Economic Order Quantity Under the Criterion of Rate of Return

  • Tcha, Dong-Wan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 1978
  • This paper presents a new method, called a modified economic order quantity method, for determining the optimal inventory policy, which uses the rate of return as its decision criterion. Especially for the simplest possible inventory system with constant demand rate, no backlogging, no lead time, etc., the formula for the optimal order policy is derived. Also mentioned are the relative merits and shortcomings of this method compared to the conventional EOQ model.

  • PDF

An Economic Analysis with the Productive Rate of Return (생산투자수익률을 적용한 생산투자사업의 경제성 분석)

  • Kim, Jin Wook;Son, Immo;Shin, Jaiwook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • The IRR (internal rate of return) is often used by investors for the evaluation of engineering projects. Unfortunately, it is widely known that it has serial flaws. Also, External rate of returns (ERRs) such as ARR (Average Rate of Return) or MIRR (MIRR, Modified Internal Rate of Return) do not differentiate between the real investment and the expenditure. The PRR (Productive rate of return) is faithful to the conception of the return on investment. The PRR uses the effective investment instead of the initial investment. In this paper, we examined two cases of the engineering project. the one is a traditional engineering project with financing activity, another is the project with R&D. Although the IRR has only one value, it overestimates or underestimate profitabilities of Engineering Projects. The ARR and the MARR assume that a returned cash reinvest other projects or assets instead of the project currently executing. Thus they are only one value of a project's profitability, unlike the IRR. But the ARR does not classify into the effective investment and non-investment expenditure. It only accepts an initial expenditure as for an investment. The MIRR also fails to classify into the investment and the expenditure. It has an error of making a loss down as the investment. The IRR works as efficiently as a NPW (Net Present Worth). It clearly expresses a rate of return in respect of an investment in an engineering project with a loan. And it shows its ability in an engineering project with a R&D investment.

Estimation of Return Flow Rate of Irrigation Water in Daepyeong Pumping District (대평 양수장 지구의 농업용수회귀율 추정)

  • Kim, Tai-Cheol;Lee, Ho-Choun;Moon, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Return flow rate of irrigation water was estimated by water balance method. Daepyeong pumping district to irrigate 75.8 ha of rice paddy in the Geum river basin was selected to install gauging instruments to collect data such as weather, water levels, infiltration rate and evapotranspiration during irrigation season (May 27 to Sept. 20) in 2003 and 2004. Irrigation and drainage discharge were calculated from the rating curve and evapotranspiration was estimated both by the modified Penman formula and by the lysimeter. The results were as followed : 1. Total amounts of pumping water during irrigation season were $1,076,000\;m^3$ in 2003 and $1,848,000\;m^3$ in 2004. Total amounts of rainfall were 1336.0mm and 1003.0mm respectively during the irrigation season in 2003 and 2004. 2. It was surveyed that the amount of infiltration was 196.5 mm (2.2 mm/day). The gauged evapotranspiration was 311.0 mm (3.5 mm/day) and the calculated evapotranspiration was 346.0 mm (3.9 mm/day) during irrigation period in 2003. It was surveyed that the amount of infiltration was 169.9 mm (2.4 mm/day). The amount of gauged evapotranspiration was 377.3 mm (5.3 mm/day) and the calculated evapotranspiration was 454.5 mm (6.6 mm/day) during irrigation period in 2004. 3. The rates of quick and delayed return flow were 52.4 % and 17.7 % respectively, and so return flow rate was 70.1 % in 2003. The rates of quick and delayed return flow were 45.4 % and 16.1 % respectively, and so return flow rate was 61.5 % in 2004. It means that average return flow rate in the Daepyeong pumping district was assumed to be 65 %.

Evaluating the Investment in the Malaysian Construction Sector in the Long-run Using the Modified Internal Rate of Return: A Markov Chain Approach

  • SARSOUR, Wajeeh Mustafa;SABRI, Shamsul Rijal Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.281-287
    • /
    • 2020
  • In capital budgeting practices, investment project evaluations based on the net present value (NPV) and the internal rate of return (IRR) represent the traditional evaluation techniques. Compared with the traditional methods, the modified internal rate of return (MIRR) gives the opportunity to evaluate an investment in certain projet, while taking the changes in cash flows over time and issuing shares such as dividing shares, bonuses, and dividend for each end of the investment year into account. Therefore, this study aims to evaluate an investment in the Malaysian construction sector utilizing financial data for 39 public listed companies operating in the Malaysian construction sector over the period from Jan 1, 2007, to December 30, 2018, based on the MIRR method. Stochastic was studied in this study to estimate the estimated probability by applying the Markov chain model to the MIRR method where the transition matrix has two possible movements of either Good (G) or Bad (B). it is found that the long-run probability of getting a good investment is higher than the probability of getting a bad investment in the long-run, where were the probabilities of good and bad are 0.5119, 0.4881, respectively. Hence, investment in the Malaysian construction sector is recommended.

A Study on the Calculation of Productive Rate of Return (생산투자수익률 계산방법에 대한 연구)

  • Kim, Jin Wook;Kim, Kun-Woo;Kim, Seok Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.95-99
    • /
    • 2015
  • The IRR(internal rate of return) is often used by investors for the evaluation of engineering projects. Unfortunately, it has serial flaws: (1) multiple real-valued IRRs may arise; (2) complex-valued IRRs may arise; (3) the IRR is, in special cases, incompatible with the net present value (NPV) in accept/reject decisions. The efforts of management scientists and economists in providing a reliable project rate of return have generated over the decades an immense amount of contributions aiming to solve these shortcomings. Especially, multiple internal rate of returns (IRRs) have a fatal flaw when we decide to accep it or not. To solve it, some researchers came up with external rate of returns (ERRs) such as ARR (Average Rate of Return) or MIRR (MIRR, Modified Internal Rate of Return). ARR or MIRR. will also always yield the same decision for a engineering project consistent with the NPV criterion. The ERRs are to modify the procedure for computing the rate of return by making explicit and consistent assumptions about the interest rate at which intermediate receipts from projects may be invested. This reinvestment could be either in other projects or in the outside market. However, when we use traditional ERRs, a volume of capital investment is still unclear. Alternatively, the productive rate of return (PRR) can settle these problems. Generally, a rate of return is a profit on an investment over a period of time, expressed as a proportion of the original investment. The time period is typically the life of a project. The PRR is based on the full life of the engineering project. but has been annualised to project one year. And the PRR uses the effective investment instead of the original investment. This method requires that the cash flow of an engineering project must be separated into 'investment' and 'loss' to calculate the PRR value. In this paper, we proposed a tabulated form for easy calculation of the PRR by modifing the profit and loss statement, and the cash flow statement.

Economic Evaluation Method Based on Rate of Return for Multiple Investment Alternatives (다수의 투자대안들에 대한 수익률 기준의 경제성 평가방법)

  • Kim, Jin Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.137-142
    • /
    • 2019
  • There are two methods for evaluating two or more mutually exclusive projects. One is a total investment approach and the other is an incremental investment approach. The former can rank projects by the criterion of the net present value, but the latter can't do it. An incremental investment approach is only possible when all pairwise alternatives are compared. Thus an incremental investment approach is superior in ranking them over an incremental investment approach. To do so, a principle of comparison must be established. Comparisons of profitability are reasonable when operating the same amount of investment over the same period of time. One principle is that all projects are invested in the largest of the projects. Another principle is that all projects are invested during the longest project life of the projects. In this paper, even if the principle is followed, it will be shown that the external rate of return fails to rank them. However, the productive rate of return criterion would prove to be able to rank them like the net present value standard, provided that the principle of comparison is kept. In addition, rate of returns can be assessed so that all mutually exclusive projects can be compared at once, such as on the criterion of the net present value. That is, it can be also compared with many other returns, such as the profit rates on financial investments or real investments.

Modified Integration Algorithm on the Strain-Space for Rate and Temperature Dependent Elasto-Plastic Constitutive model (변형률 공간에서 변형률속도 및 온도를 고려한 구성방정식의 개선된 적분방법)

  • Cho, S.S.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.272-275
    • /
    • 2007
  • This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.

  • PDF

Forecasting KOSPI Return Using a Modified Stochastic AdaBoosting

  • Bae, Sangil;Jeong, Minsoo
    • East Asian Economic Review
    • /
    • v.25 no.4
    • /
    • pp.403-424
    • /
    • 2021
  • AdaBoost tweaks the sample weight for each training set used in the iterative process, however, it is demonstrated that it provides more correlated errors as the boosting iteration proceeds if models' accuracy is high enough. Therefore, in this study, we propose a novel way to improve the performance of the existing AdaBoost algorithm by employing heterogeneous models and a stochastic twist. By employing the heterogeneous ensemble, it ensures different models that have a different initial assumption about the data are used to improve on diversity. Also, by using a stochastic algorithm with a decaying convergence rate, the model is designed to balance out the trade-off between model prediction performance and model convergence. The result showed that the stochastic algorithm with decaying convergence rate's did have a improving effect and outperformed other existing boosting techniques.

A Numerical Analysis on Transient Fuel Temperatures in a Military Aircraft with Additional Fuel Supplies and Return (추가연료 공급,회송량에 따른 항공기내 연료온도 변화에 대한 수치해석적 연구)

  • Kim,Yeong-Jun;Kim,Chang-Nyeong;Kim,Cheol-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.73-84
    • /
    • 2003
  • A transient analysis on fuel temperatures in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method of modified Dufort-Frankel scheme. Among various missions, close air support mission was considered with 20% hot day ambient condition in subsonic region. The aircraft was assumed to be in turbulent flow. The fuel system model with additional fuel supplies and return concept was considered. As a result of this analysis, the fuel tank temperatures have increased with the increase of the additional fuel supplies. In contrast to tank temperatures, the fuel temperature at the engine inlet has decreased with the increase of additional fuel supplies except in some in-flight phases having high engine fuel flow. From this analysis, the fuel system with the additional fuel supplies and return concept has been shown to be an effective method to decrease the engine inlet fuel temperature. Also, it has been shown that fuel flow rate through fuel/oil heat exchanger is a key factor influencing fuel temperature.

A study of real estate investment value and analytic technique -mainly by case study of real estate development projects- (부동산 투자가치와 사업타당성 분석기법 연구 -개발사업 사업타당성 분석 사례연구를 중심으로-)

  • Lee, Taek-Soo;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6128-6134
    • /
    • 2012
  • In so many real estate development projects, there were strong needs to have a powerful tool to check feasibility of those projects. But there were not enough tool and measure to cover risk of real estate development and construction. Therefore I tried to find a real tool to measure investment value of development properly and efficiently, by means of case studies of many real estate development projects. Finally I found a fact that no tools of investment value analysis are perfect and efficient to hedge all kinds of risks in projects. Especially NPV(Net Present Value) and IRR(Internal Rate of Return) were not sufficient by themselves to measure investment value. So I found out that MIRR(Modified IRR), XIRR(X-IRR), ARR(Average Rate of Return), PP(Payback Period) and so on, would be supplementaries of proper and efficient investment value analysis.