• 제목/요약/키워드: Modified RANSAC

검색결과 8건 처리시간 0.018초

Fast Outlier Removal for Image Registration based on Modified K-means Clustering

  • Soh, Young-Sung;Qadir, Mudasar;Kim, In-Taek
    • 융합신호처리학회논문지
    • /
    • 제16권1호
    • /
    • pp.9-14
    • /
    • 2015
  • Outlier detection and removal is a crucial step needed for various image processing applications such as image registration. Random Sample Consensus (RANSAC) is known to be the best algorithm so far for the outlier detection and removal. However RANSAC requires a cosiderable computation time. To drastically reduce the computation time while preserving the comparable quality, a outlier detection and removal method based on modified K-means is proposed. The original K-means was conducted first for matching point pairs and then cluster merging and member exclusion step are performed in the modification step. We applied the methods to various images with highly repetitive patterns under several geometric distortions and obtained successful results. We compared the proposed method with RANSAC and showed that the proposed method runs 3~10 times faster than RANSAC.

Modified SIFT와 블록프로세싱을 이용한 적외선과 광학 위성영상의 자동정합기법 (Automatic Registration Method for EO/IR Satellite Image Using Modified SIFT and Block-Processing)

  • 이강훈;최태선
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.174-181
    • /
    • 2011
  • 본 논문에서는 적외선 위성영상과 광학 위성영상을 위한 정합방법을 제안하였다. 적외선 영상은 물체에서 방사하는 열에너지를 측정한 것으로, 광학 영상과는 다른 정보를 보여주는 장점으로 많은 분야에 응용된다. 하지만 적외선 영상은 대비가 광학 영상에 비해 낮아, 영상 정합을 위한 특징점 추출 및 매칭을 하기가 어렵다. 이를 극복하기 위해, Modifed SIFT(Scale Invariant Feature Transform)를 사용하여 특징점을 추출 및 매칭하였다. 또한 특징점의 상대적 변별력을 증가시키기 위해, 영상을 블록화해서 Modified SIFT와 RANSAC (RANdom SAample Concensus)을 적용하였다. 마지막으로 오매칭이 있는 블록의 특징점을 제거하기 위해, 각 블록에서 추출된 특징점을 원 영상의 좌표계로 통합해 RANSAC을 다시 한 번 적용하였다. 실험에 사용된 적외선 영상의 파장대역은 3~5um이며, 실험결과 제안된 방법은 적외선과 광학 영상정합에 강인한 성능을 보였다.

A NEW LANDSAT IMAGE CO-REGISTRATION AND OUTLIER REMOVAL TECHNIQUES

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.594-597
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a time-consuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

  • PDF

A New Landsat Image Co-Registration and Outlier Removal Techniques

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.439-443
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a timeconsuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

수정된 RANSAC 알고리즘과 지상라이다 데이터를 이용한 수치지도 건물레이어 갱신 (Update of Digital Map by using The Terrestrial LiDAR Data and Modified RANSAC)

  • 김상민;정재훈;이재빈;허준;홍성철;조형식
    • 대한공간정보학회지
    • /
    • 제22권4호
    • /
    • pp.3-11
    • /
    • 2014
  • 최근 도시는 신규건축, 재건축 및 부분적인 리모델링 등 다양한 형태로 변화하고 있으며, 이에 따라 수치지도 또한 최신성 및 정확도를 유지할 수 있도록 지속적인 수정 및 갱신을 통해 사용자들에게 최적의 서비스를 제공할 수 있어야 한다. 일반적으로 수치지도 수정 및 갱신 방법으로는 항공사진 혹은 준공도면을 이용하고 있으나, 항공사진은 촬영주기제한 및 경제성 측면에서 국소 지역에 대한 수시 갱신이 어렵고 준공도면의 경우 품질 확보의 어려움이 존재한다. 본 연구에서는 빠르게 변하는 도심지의 건물 개발 현황을 수치지도상의 건물 정보에 신속하게 반영하기 위해 지상라이다로부터 추출한 건물 footprint 자료를 이용하는 방법론을 제안하였다. 우선 지상라이다로부터 취득된 전체 건물의 포인트 클라우드 자료로부터 대표 옆면을 추출하고, 2차원 영상으로 투영한다. 투영된 포인트 클라우드 자료로부터 footprint를 추출하고, 추출된 footprint와 수치지도 상의 건물 footprint 간의 정합을 위해 2D Affine 모델을 사용하였다. 2D Affine 파라미터의 추정에는 두 footprint 자료로부터 취득된 무게중심을 사용하였으며, 무작위로 추출된 무게중심 간의 매칭을 위해 수정된 RANSAC (RANdom SAmple Consensus) 알고리즘을 제시하였다. 다양한 조건하에서 수행된 실험결과 제안된 알고리즘을 적용할 경우, 지상라이다로부터 추출된 건물데이터를 활용하여 효율적인 수치지형도의 갱신이 가능함을 확인할 수 있었다.

Ego-Motion 보정기법을 적용한 쿼드로터의 화재 감지 알고리즘 (Fire Detection Algorithm for a Quad-rotor using Ego-motion Compensation)

  • 이영완;김진황;오정주;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.21-27
    • /
    • 2015
  • A conventional fire detection has been developed based on images captured from a fixed camera. However, It is difficult to apply current algorithms to a flying Quad-rotor to detect fire. To solve this problem, we propose that the fire detection algorithm can be modified for Quad-rotor using Ego-motion compensation. The proposed fire detection algorithm consists of color detection, motion detection, and fire determination using a randomness test. Color detection and randomness test are adapted similarly from an existing algorithm. However, Ego-motion compensation is adapted on motion detection for compensating the degree of Quad-rotor's motion using Planar Projective Transformation based on Optical Flow, RANSAC Algorithm, and Homography. By adapting Ego-motion compensation on the motion detection step, it has been proven that the proposed algorithm has been able to detect fires 83% of the time in hovering mode.

수정 Starburst 알고리즘과 Homography Normalization을 이용한 시선추적 (Gaze Tracking Using a Modified Starburst Algorithm and Homography Normalization)

  • 조태훈;강현민
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1162-1170
    • /
    • 2014
  • 본 논문에서는 두 개의 카메라를 이용하여 보다 정확한 동공 인식을 통한 원격방식의 시선 추적을 제안한다. 헤드 장착형 시선추적용으로 개발된 Starburst 알고리즘은 원격방식의 시선추적에서는 카메라가 보다 넓은 영역을 보기 때문에 눈썹, 눈꼬리 등 외란이 많아 스타버스트 알고리즘을 바로 적용하면 동공 중심 추출에 실패하는 경우가 많았다. 이에 템플렛매칭을 이용하여 대략적인 동공영역을 찾고, 찾은 영역 내에서만 스타버스트 알고리즘으로 동공의 경계 후보점들을 찾은 후 보완된 RANSAC 알고리즘으로 타원근사하여 동공의 중심을 추출하였다. 추출된 동공중심을 머리의 움직임에 거의 영향을 받지 않도록 4개의 적외선 LED를 모니터 네 구석에 부착하고 Homography normalization을 적용하였다. 스크린 좌표계로 변환할 때 기존에는 호모그래피를 사용하였으나, 카메라 렌즈의 비선형왜곡을 보상하기 위해 여기서는 고차다항식을 이용한 캘리브레이션 기법을 이용하였다. 끝으로, 두 대의 카메라를 사용하여 정확도와 신회성이 향상됨을 보인다.

Fast Image Stitching For Video Stabilization Using Sift Feature Points

  • Hossain, Mostafiz Mehebuba;Lee, Hyuk-Jae;Lee, Jaesung
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.957-966
    • /
    • 2014
  • Video Stabilization For Vehicular Applications Is An Important Method Of Removing Unwanted Shaky Motions From Unstable Videos. In This Paper, An Improved Video Stabilization Method With Image Stitching Has Been Proposed. Scale Invariant Feature Transform (Sift) Matching Is Used To Calculate The New Position Of The Points In Next Frame. Image Stitching Is Done In Every Frame To Get Stabilized Frames To Provide Stable Video As Well As A Better Understanding Of The Previous Frame'S Position And Show The Surrounding Objects Together. The Computational Complexity Of Sift (Scale-Invariant Feature Transform) Is Reduced By Reducing The Sift Descriptors Size And Resticting The Number Of Keypints To Be Extracted. Also, A Modified Matching Procedure Is Proposed To Improve The Accuracy Of The Stabilization.