• 제목/요약/키워드: Modified Power-law

검색결과 131건 처리시간 0.026초

Experimental Investigation on Onset Criteria of Liquid/Gas Entrainment in the Header-Feeder System of CANDU

  • Lee Jae-Young;Hwang Gi-Suk;Kim Man-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1030-1042
    • /
    • 2006
  • An experimental study has been performed to investigate the off-take phenomena at the header-feeder systems (horizontal header pipe with multiple feeder branch pipes) in a CANDU (CANadian Deuterium Uranium) reactor with the branch orientation varies ${\pm}36^{\circ}\;or\;{\pm}72^{\circ}$. In order to evaluate the applicability of the conventional correlations used in the safety analysis code, RELAP5-Mod3, the test facility is designed with the 1/2 scale of the. CANDU 6. It was found that the data set for the top, bottom and side branches are in a good agreement with the correlations used. However, for the specific angled branches, ${\pm}36^{\circ}\;and\;{\pm}72^{\circ}$, the onsets of off-take data and quality data showed large deviation with the conventional model inside RELAP5-MOD3. Furthermore, based on the uncertainty analysis, the conventional 2.5 power law needs to be modified. The present experimental data set can be useful for the construction of the general correlation considering the arbitrary branch orientation.

미고결 셰일의 크립 특성 (Creep Characteristics of Unconsolidated Shale)

  • 장찬동
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2006
  • 실내실험을 통해 미고결 셰일의 압밀은 시간 의존적 비복원 점성변형임을 보였다. 점소성 이론과 Cam-clay 이론을 접목하여 미고결 셰일의 구성방정식이 동항복/정항복면의 크기에 대한 지수함수의 형태로 주어짐을 보였으며 이를 통해 크립 변형은 시간에 대한 로그함수의 형태로 구해짐을 보였다. 실험자료와 이론을 비교하여 구성방정식의 물질상수를 규명한 결과 셰일의 항복점은 변형속도가 10배 증가함에 따라 약 6%의 증가하는 것으로 나타났으며 이는 실내 변형속도 조건에서 규명한 셰일의 물성(항복점, 공극률)을 실제 현장 변형속도 조건에 적용시에 상당한 오차를 유발할 수 있음을 시사한다.

  • PDF

복합처리(Carburized/CrN Coating)로 표면개질된 Ti-6Al-4V합금의 크리프 특성 (Creep Characteristics of Ti-6Al-4V Alloy Surface Modified by Plasma Carburized/CrN Coating)

  • 박용권;박정웅;위명용
    • 열처리공학회지
    • /
    • 제18권3호
    • /
    • pp.183-189
    • /
    • 2005
  • The effects of duplex-treatment of plasma carburization and CrN coating onto Ti-6Al-4V alloy on its creep properties were investigated by means of a constant stress creep tester. Applying duplex-treatment, specimens having an inner carburized layer of about $150{\mu}m$ in depth and outer CrN layer of about $7.5{\mu}m$ in thickness were prepared. The hardness of duplex-treatment surface was about 1,960 VHN. It also appeared that the duplex-treatment improved the roughness of the surface significantly; $Ra=0.045{\mu}m$ for treated alloy while $Ra=0.321{\mu}m$ for untreated alloy. The steady-state creep behaviors were investigated in a temperature range of $510{\sim}550^{\circ}C$ ($0.42{\sim}0.44T_m$) under an applied stress range of 200~275 MPa. The stress exponent, n, was derived assuming the power law creep behavior. The surface treatment showed a decrease in a value from 9.32 (untreated) to 8.79 (treated). Also the activation energy obtained from an Arrhenius plot increased from 238 to 257 kJ/mol.

Rheological and Pasting Properties of Naked Barley Flour as Modified by Guar, Xanthan, and Locust Bean Gums

  • Yoon, Sung-Jin;Lee, Youngseung;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • 제21권4호
    • /
    • pp.367-372
    • /
    • 2016
  • To understand the effects of adding different gums (guar, xanthan, and locust bean gums) on naked barley flour (NBF), the rheological and pasting properties of NBF-gum mixtures were measured at different gum concentrations (0, 0.3, and 0.6% w/w). Steady shear rheological properties were determined by rheological parameters for power law and Casson models. All samples showed a clear trend of shear-thinning behavior (n=0.16~0.48) and had a non-Newtonian nature with yield stress. Consistency index, apparent viscosity, and yield stress values increased with an increase in gum concentration. Storage modulus values were more predominant than loss modulus values with all concentrations of gums. There is a more pronounced synergistic effect of elastic properties of NBF in the presence of xanthan gum. Rapid visco analyser pasting properties showed that the addition of gums resulted in a significant increase in the peak, breakdown, setback, and final viscosities, whereas the pasting temperature decreased.

A356합금의 품질지수에 미치는 미소기공율의 영향 (Effect of Porosity on Quality Index of Tensile Property of A356 Casting Alloys)

  • 이충도
    • 한국주조공학회지
    • /
    • 제38권5호
    • /
    • pp.95-102
    • /
    • 2018
  • The dependence of the tensile properties on variations in the porosity of A356 aluminium alloys was investigated in terms of the quality index of the tensile properties based upon the ultimate tensile strength and elongation as well as the variation of the strength coefficient and strain-hardening exponent with regard to a T6 treatment. The test specimens were prepared by low-pressure die-casting and a subsequent T6 treatment, and the experimental results of a tensile test carried out at room temperature were compared to the theoretical description using a modified constitutive model. The nominal value of the quality index of A356 alloys increases gradually with a lapse of the ageing time upon a T6 treatment, despite the fact that this value is temporarily decreased during the initial stage of ageing from a solutionised condition. Additionally, the quality index depends practically upon the porosity variation with a power law relationship without regard to whether in solutionised or artificial aged conditions. The theoretical description indicates that the strength coefficient directly determines the nominal level of the quality index. Moreover, the overall dependence of the quality index on the porosity variation is remarkably weakened with an increase in the tensile strain, whereas the quality index depends sensitively upon the porosity variation with a low value of the strain-hardening exponent.

High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi;Arao, Yoshihiko;Karasawa, Hirokazu;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.151-166
    • /
    • 2007
  • High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A.;Abo-Bakr, Rasha M.
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.451-463
    • /
    • 2020
  • In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.

Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate

  • Salari, Erfan;Ashoori, Alireza;Vanini, Seyed Ali Sadough
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.25-38
    • /
    • 2019
  • This research is aimed at studying the asymmetric thermal buckling of porous functionally graded (FG) annular nanoplates resting on an elastic substrate which are made of two different sets of porous distribution, based on nonlocal elasticity theory. Porosity-dependent properties of inhomogeneous nanoplates are supposed to vary through the thickness direction and are defined via a modified power law function in which the porosities with even and uneven type are approximated. In this model, three types of thermal loading, i.e., uniform temperature rise, linear temperature distribution and heat conduction across the thickness direction are considered. Based on Hamilton's principle and the adjacent equilibrium criterion, the stability equations of nanoporous annular plates on elastic substrate are obtained. Afterwards, an analytical solution procedure is established to achieve the critical buckling temperatures of annular nanoplates with porosities under different loading conditions. Detailed numerical studies are performed to demonstrate the influences of the porosity volume fraction, various thermal loading, material gradation, nonlocal parameter for higher modes, elastic substrate coefficients and geometrical dimensions on the critical buckling temperatures of a nanoporous annular plate. Also, it is discussed that because of present of thermal moment at the boundary conditions, porous nanoplate with simply supported boundary condition doesn't buckle.

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation

  • Rabia, Benferhat;Tahar, Hassaine Daouadji;Abderezak, Rabahi
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.499-519
    • /
    • 2020
  • The effect of porosity on the thermo-mechanical behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity. The present formulation is based on a refined higher order shear deformation theory, which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the Winkler-Pasternak model. Anew modified power-law formulation is used to describe the material properties of FGM plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses are affected by the porosity volume fraction, constituent volume fraction, and thermal load.