• Title/Summary/Keyword: Modified PID control

Search Result 61, Processing Time 0.034 seconds

PID Control Method with Modified Integral Parameter (변형된 적분 파라미터를 가진 PID 제어방식)

  • 엄기환;강성호;이정훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.11-16
    • /
    • 2004
  • The integral term of PID controller have the advantage of reduced steady state error and the disadvantage of accumulated errors. We proposed a method that maintains its advantage and improvs the disadvantage in transient response. The proposed PID control method with modified integral parameter accumulates errors in increment section and ignores errors in decrement section. Therefore, the proposed PID control method decreases overshoot, and makes settling time faster than conventional PID control method.

A Study on Design of the Modified Fuzzy-Compensated PID Controller (개선된 퍼지보상 PID제어기 설계에 관한 연구)

  • Lee, H.J.;Kim, J.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.111-118
    • /
    • 1995
  • This paper presents the modified fuzzy-compensated PID(FCPID) control, which involves adding the compensator to an existing PID controller, to improve the performances of the systems. Compared to a conventional PID control and a fuzzy logic control(FLC), the proposed control scheme has superior performance. Experimental results of an actual implementation of the modified PC-based FCPID controller on the DC servo-motor demonstrate considerable improve- ment of the performance of the existing FCPID control by monitoring the scaling factor. They show faster responses and smaller overshoots than the conventional FCPID control scheme for the various reference inputs and the robustness to the loads.

  • PDF

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

An FPGA-Based Modified Adaptive PID Controller for DC/DC Buck Converters

  • Lv, Ling;Chang, Changyuan;Zhou, Zhiqi;Yuan, Yubo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.346-355
    • /
    • 2015
  • On the basis of the conventional PID control algorithm, a modified adaptive PID (MA-PID) control algorithm is presented to improve the steady-state and dynamic performance of closed-loop systems. The proposed method has a straightforward structure without excessively increasing the complexity and cost. It can adaptively adjust the values of the control parameters ($K_p$, $K_i$ and $K_d$) by following a new control law. Simulation results show that the line transient response of the MA-PID is better than that of the adaptive digital PID because the differential coefficient $K_d$ is introduced to changes. In addition, experimental results based on a FPGA indicate that the MA-PID control algorithm reduces the recovery time by 62.5% in response to a 1V line transient, 50% in response to a 500mA load transient, and 23.6% in response to a steady-state deviation, when compared with the conventional PID control algorithm.

Design of the Modified PID Speed Controller to Reduce the Speed Ripple (속도 리플 억제를 위한 수정된 PID 속도 제어기의 설계)

  • Kim, Hong-Min;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • PMSM(Permanent Magnet Synchronous Motor) has periodic torque ripple from the cogging torque and load conditions. This paper proposes the modified PID speed controller to reduce the speed ripple of the PMSM. The proposed modified PID controller uses a selective D(Differential) control term according to the speed error and the differential of the speed error. The proposed speed controller produces an additional torque reference such as torque compensator based on PI controller according to the speed error and the differential of the speed error, and it can reduce the vibration of the conventional D-control term with reduced speed ripple. Since the additional torque reference of the proposed speed controller is changed by the sign of the speed error and the differential of the speed error, a simple function to determine the sign of the error is used to produce the compensated torque. The proposed control scheme is verified by the computer simulation and the experiments.

A Design of Optimal PID Controller in HVDC Transmission System Using Modified Genetic Algorithm (수정 유전 알고리즘을 이용한 초고압 직류송전 시스템의 최적 PID 제어기 설계)

  • Chung, Hyeng-Hwan;Wang, Yong-Peel;Hur, Dong-Ryol;Moon, Young-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.247-256
    • /
    • 1999
  • In this paper, a methodology for optimal design of PID controller using the modified genetic algorithm has been proposed to improve the transient stability at system fault in HVDC transmission system, mathematical model preparation for stability analysis, and supplementary signal control by an optimal PID controller using the modified genetic algorithm(MGA). The propriety was verified through computer simulations regarding transient stability. It means that the application of MGA-PID controller in HVDC transmission system can contribute the propriety to the improvement of the transient stability in HVDC transmission system and the design of MGA-PID controller has been proved indispensible when applied to HVDC transmission system.

  • PDF

A modified Genetic Algorithm using SVM for PID Gain Optimization

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.686-689
    • /
    • 2004
  • Genetic algorithm is well known for stochastic searching method in imitating natural phenomena. In recent times, studies have been conducted in improving conventional evolutionary computation speed and promoting precision. This paper presents an approach to optimize PID controller gains with the application of modified Genetic Algorithm using Support Vector Machine (SVMGA). That is, we aim to explore optimum parameters of PID controller using SVMGA. Simulation results are given to compare to those of tuning methods, based on Simple Genetic Algorithm and Ziegler-Nicholas tuning method.

  • PDF

Design of Fuzzy PID Controller for Tracking Control (퍼지 PID 제어를 이용한 추종 제어기 설계)

  • Kim, Bong--Joo;Chung, Chung-Chao
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.622-631
    • /
    • 2001
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

Modified Time Delay Control for Servo with Friction (마찰이 있는 서보의 변형된 시지연제어)

  • Park, J.H.;Kim, Y.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.106-113
    • /
    • 1997
  • A new algorithm based upon TDC (Time Delay Control) is proposed to improve the robustness of TDC performance in systems where the stick-slip friction is strong. Experiments were performed at the different levels of friction. The reponses of the TDC and the modified TDC were compared each other, and against those of a PID controller with an anti-windup. The results show that the TDC and the modified TDC equally perform better than the PID, and that the modified TDC performs consistently well even with variations in the friction level while the TDC does not.

  • PDF

Self-tuning Nonlinear PID Control Using Neural Network (신경망을 이용한 자기동조 비선형 PID제어)

  • Kim, Dae-Ho;Kim, Jung-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2102-2104
    • /
    • 2001
  • This paper present the strategy of self-tuning nonlinear PID control using neural network. The nonlinear PID controller consists of a conventional PID controller and a neural network compensator. The neural network is trained by back-propagation algorithm. In this paper we propose modified back-propagation algorithm to improve learning speed. The results of simulation show the usefulness of the proposed scheme.

  • PDF