• Title/Summary/Keyword: Modified K-means Clustering

Search Result 60, Processing Time 0.024 seconds

A hybrid method to compose an optimal gene set for multi-class classification using mRMR and modified particle swarm optimization (mRMR과 수정된 입자군집화 방법을 이용한 다범주 분류를 위한 최적유전자집단 구성)

  • Lee, Sunho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.683-696
    • /
    • 2020
  • The aim of this research is to find an optimal gene set that provides highly accurate multi-class classification with a minimum number of genes. A two-stage procedure is proposed: Based on minimum redundancy and maximum relevance (mRMR) framework, several statistics to rank differential expression genes and K-means clustering to reduce redundancy between genes are used for data filtering procedure. And a particle swarm optimization is modified to select a small subset of informative genes. Two well known multi-class microarray data sets, ALL and SRBCT, are analyzed to indicate the effectiveness of this hybrid method.

Characterization of Premature Ventricular Contraction by K-Means Clustering Learning Algorithm with Mean-Reverting Heart Rate Variability Analysis (평균회귀 심박변이도의 K-평균 군집화 학습을 통한 심실조기수축 부정맥 신호의 특성분석)

  • Kim, Jeong-Hwan;Kim, Dong-Jun;Lee, Jeong-Whan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1072-1077
    • /
    • 2017
  • Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.

Speaker-Independent Isolated Word Recognition Using A Modified ISODATA Method (Modified ISODATA 방법을 이용한 불특정화자 단독어 인식)

  • Hwang, U-Geun;An, Tae-Ok;Lee, Hyeong-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.31-43
    • /
    • 1987
  • As a study on Speaker-Independent Isolated Word Recognition, a Modified ISODATA clustering method is proposed. This method simplifies the outlier processing and the splitting procedure in conventional ISODATA algorithm, and eliminates the lumping procedure. Through this method, we could find cluster centers precisely and automatically. When this method applied to 11 digits by 10 males and 4 females, its recognition rates of $84.42\%$ for K=4 were better than those of the latest Modified K-means, $82.5\%$. Judging from these results, we proved this method the best method in finding cluster centers precisely.

  • PDF

The Binarization of Text Regions in Natural Scene Images, based on Stroke Width Estimation (자연 영상에서 획 너비 추정 기반 텍스트 영역 이진화)

  • Zhang, Chengdong;Kim, Jung Hwan;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, a novel text binarization is presented that can deal with some complex conditions, such as shadows, non-uniform illumination due to highlight or object projection, and messy backgrounds. To locate the target text region, a focus line is assumed to pass through a text region. Next, connected component analysis and stroke width estimation based on location information of the focus line is used to locate the bounding box of the text region, and each box of connected components. A series of classifications are applied to identify whether each CC(Connected component) is text or non-text. Also, a modified K-means clustering method based on an HCL color space is applied to reduce the color dimension. A text binarization procedure based on location of text component and seed color pixel is then used to generate the final result.

  • PDF

Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission

  • Li, Dongsheng;Shao, Junbo;Ou, Jinping;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2017
  • Fiber reinforced polymer (FRP) has received widespread attention in the field of civil engineering because of its superior durability and corrosion resistance. This article presents the damage mechanisms of a novelty composite called carbon nanofiber modified flax fiber polymer (CNF-modified FFRP). The ability of acoustic emission (AE) to detect damage evolution for different configurations of specimens under uniaxial tension was examined, and some useful AE characteristic parameters were obtained. Test results shows that the mechanical properties of modified composites are associated with the CNF content and the evenness of CNF dispersed in the epoxy matrix. Various damage mechanisms was established by means of scanning electron microscope images. The fuzzy c-means clustering were proposed to classify AE events into groups representing different generation mechanisms. The classifiers are constructed using the traditional AE features -- six parameters from each burst. Amplitude and peak-frequency were selected as the best cluster-definition features from these AE parameters. After comprehensive comparison, a correlation between these AE events classes and the damage mechanisms observed was proposed.

Automatic Extraction of Component Inspection Regions from Printed Circuit Board by Image Clustering (영상 클러스터링에 의한 인쇄회로기판의 부품검사영역 자동추출)

  • Kim, Jun-Oh;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2012
  • The inspection machine in PCB (printed circuit board) assembly line checks assembly errors by inspecting the images inside of the component inspection region. The component inspection region consists of region of component package and region of soldering. It is necessary to extract the regions automatically for auto-teaching system of the inspection machine. We propose an image segmentation method to extract the component inspection regions automatically from images of PCB. The acquired image is transformed to HSI color model, and then segmented by several regions by clustering method. We develop a modified K-means algorithm to increase the accuracy of extraction. The heuristics generating the initial clusters and merging the final clusters are newly proposed. The vertical and horizontal projection is also developed to distinguish the region of component package and region of soldering. The experimental results are presented to verify the usefulness of the proposed method.

Abrupt Shot Change Detection using an Unsupervised Clustering of Multiple Features (클러스터링을 이용한 급격한 장면 전환 검출 기법)

  • Lee, Hun-Cheol;Go, Yun-Ho;Yun, Byeong-Ju;Kim, Seong-Dae;Yu, Sang-Jo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.712-720
    • /
    • 2001
  • In this paper, we propose an efficient method to detect abrupt shot changes in a video sequence using an unsupervised clustering. Conventional clustering-based shot change detection algorithms use multiple features in order to overcome the shortcomings of a single feature. In such methods it is very important to determine the appropriate initial cluster centers well. In this paper we propose a modified k-means clustering algorithm which estimates the initial cluster center adaptively. Experimental results show that the proposed algorithm works well.

  • PDF

A New Fast EM Algorithm (새로운 고속 EM 알고리즘)

  • 김성수;강지혜
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.10
    • /
    • pp.575-587
    • /
    • 2004
  • In this paper. a new Fast Expectation-Maximization algorithm(FEM) is proposed. Firstly the K-means algorithm is modified to reduce the number of iterations for finding the initial values that are used as the initial values in EM process. Conventionally the Initial values in K-means clustering are chosen randomly. which sometimes forces the process of clustering converge to some undesired center points. Uniform partitioning method is added to the conventional K-means to extract the proper initial points for each clusters. Secondly the effect of posterior probability is emphasized such that the application of Maximum Likelihood Posterior(MLP) yields fast convergence. The proposed FEM strengthens the characteristics of conventional EM by reinforcing the speed of convergence. The superiority of FEM is demonstrated in experimental results by presenting the improvement results of EM and accelerating the speed of convergence in parameter estimation procedures.

A Hybrid Multiuser Detection Algorithm for Outer Space DS-UWB Ad-hoc Network with Strong Narrowband Interference

  • Yin, Zhendong;Kuang, Yunsheng;Sun, Hongjian;Wu, Zhilu;Tang, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1316-1332
    • /
    • 2012
  • Formation flying is an important technology that enables high cost-effective organization of outer space aircrafts. The ad-hoc wireless network based on direct-sequence ultra-wideband (DS-UWB) techniques is seen as an effective means of establishing wireless communication links between aircrafts. In this paper, based on the theory of matched filter and error bits correction, a hybrid detection algorithm is proposed for realizing multiuser detection (MUD) when the DS-UWB technique is used in the ad-hoc wireless network. The matched filter is used to generate a candidate code set which may contain several error bits. The error bits are then recognized and corrected by an novel error-bit corrector, which consists of two steps: code mapping and clustering. In the former step, based on the modified optimum MUD decision function, a novel mapping function is presented that maps the output candidate codes into a feature space for differentiating the right and wrong codes. In the latter step, the codes are clustered into the right and wrong sets by using the K-means clustering approach. Additionally, in order to prevent some right codes being wrongly classified, a sign judgment method is proposed that reduces the bit error rate (BER) of the system. Compared with the traditional detection approaches, e.g., matched filter, minimum mean square error (MMSE) and decorrelation receiver (DEC), the proposed algorithm can considerably improve the BER performance of the system because of its high probability of recognizing wrong codes. Simulation results show that the proposed algorithm can almost achieve the BER performance of the optimum MUD (OMD). Furthermore, compared with OMD, the proposed algorithm has lower computational complexity, and its BER performance is less sensitive to the number of users.

An Improved Clustering Method with Cluster Density Independence (클러스터 밀도에 무관한 향상된 클러스터링 기법)

  • Yoo, Byeong-Hyeon;Kim, Wan-Woo;Heo, Gyeongyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.248-249
    • /
    • 2015
  • Clustering is one of the most important unsupervised learning methods that clusters data into homogeneous groups. However, cluster centers tend leaning to high density clusters because clustering is based on the distances between data points and cluster centers. In this paper, a modified clustering method forcing cluster centers to be apart by introducing a center-scattering term in the Fuzzy C-Means objective function is introduced. The proposed method converges more to real centers with small number of iterations compared to the original one. All the strengths can be verified with experimental results.

  • PDF