• Title/Summary/Keyword: Modified K-Means

Search Result 474, Processing Time 0.021 seconds

An Implementation of K-Means Algorithm Improving Cluster Centroids Decision Methodologies (클러스터 중심 결정 방법을 개선한 K-Means 알고리즘의 구현)

  • Lee Shin-Won;Oh HyungJin;An Dong-Un;Jeong Seong-Jong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.867-874
    • /
    • 2004
  • K-Means algorithm is a non-hierarchical (plat) and reassignment techniques and iterates algorithm steps on the basis of K cluster centroids until the clustering results converge into K clusters. In its nature, K-Means algorithm has characteristics which make different results depending on the initial and new centroids. In this paper, we propose the modified K-Means algorithm which improves the initial and new centroids decision methodologies. By evaluating the performance of two algorithms using the 16 weighting scheme of SMART system, the modified algorithm showed $20{\%}$ better results on recall and F-measure than those of K-Means algorithm, and the document clustering results are quite improved.

Charging of Sensor Network using Multiple Mobile Robots (다중 이동 로봇을 이용한 센서 네트워크의 충전)

  • Moon, Chanwoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.345-350
    • /
    • 2021
  • The maintenance of sensor networks, installed in a wide area has been an issue for a long time. In order to solve this problem, studies to supply energy to a sensor network using a robot has been carried out by several researchers. In this study, for a sensor network consisting of power nodes supplied with energy by multiple robots and sensor nodes around them, we propose a method of allocating a work area using a modified k-means algorithm so that the robots move the minimum distance. Through the simulation study using the energy transfer rate of the robot as a variable, it is shown that nodes of each allocated area can maintain survival, and the validity of the proposed modified k-means algorithm is verified.

Inverted Index based Modified Version of K-Means Algorithm for Text Clustering

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors and modified version of k means algorithm to be adaptable to string vectors for text clustering. Traditionally, when k means algorithm is used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text clustering, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and modify the k means algorithm adaptable to string vectors for text clustering.

Pruning Methodology for Reducing the Size of Speech DB for Corpus-based TTS Systems (코퍼스 기반 음성합성기의 데이터베이스 축소 방법)

  • 최승호;엄기완;강상기;김진영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.703-710
    • /
    • 2003
  • Because of their human-like synthesized speech quality, recently Corpus-Based Text-To-Speech(CB-TTS) have been actively studied worldwide. However, due to their large size speech database (DB), their application is very restricted. In this paper we propose and evaluate three DB reduction algorithms to which are designed to solve the above drawback. The first method is based on a K-means clustering approach, which selects k-representatives among multiple instances. The second method is keeping only those unit instances that are selected during synthesis, using a domain-restricted text as input to the synthesizer. The third method is a kind of hybrid approach of the above two methods and is using a large text as input in the system. After synthesizing the given sentences, the used unit instances and their occurrence information is extracted. As next step a modified K-means clustering is applied, which takes into account also the occurrence information of the selected unit instances, Finally we compare three pruning methods by evaluating the synthesized speech quality for the similar DB reduction rate, Based on perceptual listening tests, we concluded that the last method shows the best performance among three algorithms. More than this, the results show that the last method is able to reduce DB size without speech quality looses.

A Hybrid Mod K-Means Clustering with Mod SVM Algorithm to Enhance the Cancer Prediction

  • Kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In Recent years the way we analyze the breast cancer has changed dramatically. Breast cancer is the most common and complex disease diagnosed among women. There are several subtypes of breast cancer and many options are there for the treatment. The most important is to educate the patients. As the research continues to expand, the understanding of the disease and its current treatments types, the researchers are constantly being updated with new researching techniques. Breast cancer survival rates have been increased with the use of new advanced treatments, largely due to the factors such as earlier detection, a new personalized approach to treatment and a better understanding of the disease. Many machine learning classification models have been adopted and modified to diagnose the breast cancer disease. In order to enhance the performance of classification model, our research proposes a model using A Hybrid Modified K-Means Clustering with Modified SVM (Support Vector Machine) Machine learning algorithm to create a new method which can highly improve the performance and prediction. The proposed Machine Learning model is to improve the performance of machine learning classifier. The Proposed Model rectifies the irregularity in the dataset and they can create a new high quality dataset with high accuracy performance and prediction. The recognized datasets Wisconsin Diagnostic Breast Cancer (WDBC) Dataset have been used to perform our research. Using the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, We have created our Model that can help to diagnose the patients and predict the probability of the breast cancer. A few machine learning classifiers will be explored in this research and compared with our Proposed Model "A Hybrid Modified K-Means with Modified SVM Machine Learning Algorithm to Enhance the Cancer Prediction" to implement and evaluated. Our research results show that our Proposed Model has a significant performance compared to other previous research and with high accuracy level of 99% which will enhance the Cancer Prediction.

Initial Codebook Design by Modified splitting Method (수정된 미소분리 방법에 의한 초기 부호책 설계)

  • 조제황
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.69-72
    • /
    • 2002
  • We propose a modified splitting method to obtain an initial codebook, which is used to design a codebook. The principle of the proposed method is that the more representative vectors are assigned to the class, which has the mere member training vectors or a lower squared error. The conventional K-means algorithm and the method provided from reference (5) are used to estimate the performance of the designed codebook. In thin work, the proposed method shows better results than the conventional splitting method in all experiments.

Fast Outlier Removal for Image Registration based on Modified K-means Clustering

  • Soh, Young-Sung;Qadir, Mudasar;Kim, In-Taek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • Outlier detection and removal is a crucial step needed for various image processing applications such as image registration. Random Sample Consensus (RANSAC) is known to be the best algorithm so far for the outlier detection and removal. However RANSAC requires a cosiderable computation time. To drastically reduce the computation time while preserving the comparable quality, a outlier detection and removal method based on modified K-means is proposed. The original K-means was conducted first for matching point pairs and then cluster merging and member exclusion step are performed in the modification step. We applied the methods to various images with highly repetitive patterns under several geometric distortions and obtained successful results. We compared the proposed method with RANSAC and showed that the proposed method runs 3~10 times faster than RANSAC.

The Enhancement of Learning Time in Fuzzy c-means algorithm (학습시간을 개선한 Fuzzy c-means 알고리즘)

  • 김형철;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.113-116
    • /
    • 2001
  • The conventional K-means algorithm is widely used in vector quantizer design and clustering analysis. Recently modified K-means algorithm has been proposed where the codevector updating step is as fallows: new codevector = current codevector + scale factor (new centroid - current codevector). This algorithm uses a fixed value for the scale factor. In this paper, we propose a new algorithm for the enhancement of learning time in fuzzy c-means a1gorithm. Experimental results show that the proposed method produces codebooks about 5 to 6 times faster than the conventional K-means algorithm with almost the same Performance.

  • PDF

Path based K-means Clustering for RFID Data Sets

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.434-438
    • /
    • 2008
  • Massive data are continuously produced with a data rate of over several terabytes every day. These applications need effective clustering algorithms to achieve an overall high performance computation. In this paper, we propose ancestor as cluster center based approach to clustering, the K-means algorithm using ancestor. We modify the K-means algorithm. We present a clustering architecture and a clustering algorithm that minimize of I/Os and show a performance with excellent. In our experimental performance evaluation, we present that our algorithm can improve the I/O speed and the query processing time.

Speaker-Independent Isolated Word Recognition Using A Modified ISODATA Method (Modified ISODATA 방법을 이용한 불특정화자 단독어 인식)

  • Hwang, U-Geun;An, Tae-Ok;Lee, Hyeong-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.31-43
    • /
    • 1987
  • As a study on Speaker-Independent Isolated Word Recognition, a Modified ISODATA clustering method is proposed. This method simplifies the outlier processing and the splitting procedure in conventional ISODATA algorithm, and eliminates the lumping procedure. Through this method, we could find cluster centers precisely and automatically. When this method applied to 11 digits by 10 males and 4 females, its recognition rates of $84.42\%$ for K=4 were better than those of the latest Modified K-means, $82.5\%$. Judging from these results, we proved this method the best method in finding cluster centers precisely.

  • PDF