• Title/Summary/Keyword: Modified Image Method

Search Result 660, Processing Time 0.036 seconds

A Study on Wavelet-based Image Denoising Using a Modified Adaptive Thresholding Method

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.45-52
    • /
    • 2012
  • Thedenoising of a natural image corrupted by Gaussian noise is a long established problem in signal or image processing. Today the research is focus on the wavelet domain, especially using the wavelet threshold method. In this paper, a waveletbased image denoising modified adaptive thresholding method is proposed. The proposed method computes thethreshold adaptively based on the scale level and adaptively estimates wavelet coefficients by using a modified thresholding function that considers the dependency between the parent coefficient and child coefficient and the soft thresholding function at different scales. Experimental results show that the proposed method provides high peak signal-to-noise ratio results and preserves the detailed information of the original image well, resulting in a superior quality image.

Image Retrieval using Modified Color Correlogram (변형된 칼라 코렐로그램을 이용한 영상검색)

  • 안명석;조석제
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.940-946
    • /
    • 2002
  • This paper proposes an image retrieval method to use the modified color correlogram. For retrieving images with less effect of the size variation of the regions in an image, the modified color correlogram is extracted by normalizing auto-correlogram and cross-correlogram of the color correlogram from a color image, and the similarity of two images is calculated by putting the less weight to the auto-correlogram of the modified color correlogram. Because proposed method uses the information of the color correlogram more effectively, we can get better results than that of color correlogram method. In the experiments, the performance of the proposed method is better as compared with that of the color cerrelogram method.

Modified Phillips-Tikhonov regularization for plasma image reconstruction with modified Laplacian matrix

  • Jang, Si-Won;Lee, Seung-Heon;Choe, Won-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.472-472
    • /
    • 2010
  • The tomography has played a key role in tokamak plasma diagnostics for image reconstruction. The Phillips-Tikhonov (P-T) regularization method was attempted in this work to reconstruct cross-sectional phantom images of the plasma by minimizing the gradient between adjacent pixel data. Recent studies about the comparison of the several tomographic reconstruction methods showed that the P-T method produced more accurate results. We have studied existing Laplacian matrix used in Phillips-Tikhonov regularization method and developed modified Laplacian matrix (Modified L). The comparison of the reconstruction result by the modified L and existing L showed that modified L produced more accurate result. The difference was significantly pronounced when a portion of plasma was reconstructed. These results can be utilized in the Edge Plasma diagnostics; especially in divertor diagnostics on tokamak a large impact is expected. In addition, accurate reconstruction results from received data in only one direction were confirmed through phantom test by using P-T method with modified L. These results can be applied to the tangentially viewing pin-hole camera diagnostics on tokamak.

  • PDF

A New Method of Remote Sensing Image Fusion Based on Modified Kohonen Networks

  • Shuhe, Zhao;Xiuwan, Chen;Junfeng, Chen;Yinghai, Ke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1337-1339
    • /
    • 2003
  • In this article, a new remote sensing image fusion model based on modified Kohonen networks is given. And a new fusion rule based on modified voting rule was established. Select Shaoxing City as the study site, located at Zhejiang Province, P.R.China. The fusion experiment between Landsat TM data (30m) and IRS-C Pan data (5.8m) was performed using the given fusion method. The fusion results show that the new method can gain better result in apply ing to the lower hill area, and the whole classification accuracy was 10% higher than the basic Kohonen method. The confusion between the woodlands and the waterbodies was also diminished.

  • PDF

STABLE AUTONOMOUS DRIVING METHOD USING MODIFIED OTSU ALGORITHM

  • Lee, D.E.;Yoo, S.H.;Kim, Y.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • In this paper a robust image processing method with modified Otsu algorithm to recognize the road lane for a real-time controlled autonomous vehicle is presented. The main objective of a proposed method is to drive an autonomous vehicle safely irrespective of road image qualities. For the steering of real-time controlled autonomous vehicle, a detection area is predefined by lane segment, with previously obtained frame data, and the edges are detected on the basis of a lane width. For stable as well as psudo-robust autonomous driving with "good", "shady" or even "bad" road profiles, the variable threshold with modified Otsu algorithm in the image histogram, is utilized to obtain a binary image from each frame. Also Hough transform is utilized to extract the lane segment. Whether the image is "good", "shady" or "bad", always robust and reliable edges are obtained from the algorithms applied in this paper in a real-time basis. For verifying the adaptability of the proposed algorithm, a miniature vehicle with a camera is constructed and tested with various road conditions. Also, various highway road images are analyzed with proposed algorithm to prove its usefulness.

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

3D Image Correlator using Computational Integral Imaging Reconstruction Based on Modified Convolution Property of Periodic Functions

  • Jang, Jae-Young;Shin, Donghak;Lee, Byung-Gook;Hong, Suk-Pyo;Kim, Eun-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.388-394
    • /
    • 2014
  • In this paper, we propose a three-dimensional (3D) image correlator by use of computational integral imaging reconstruction based on the modified convolution property of periodic functions (CPPF) for recognition of partially occluded objects. In the proposed correlator, elemental images of the reference and target objects are picked up by a lenslet array, and subsequently are transformed to a sub-image array which contains different perspectives according to the viewing direction. The modified version of the CPPF is applied to the sub-images. This enables us to produce the plane sub-image arrays without the magnification and superimposition processes used in the conventional methods. With the modified CPPF and the sub-image arrays, we reconstruct the reference and target plane sub-image arrays according to the reconstruction plane. 3D object recognition is performed through cross-correlations between the reference and the target plane sub-image arrays. To show the feasibility of the proposed method, some preliminary experiments on the target objects are carried out and the results are presented. Experimental results reveal that the use of plane sub-image arrays enables us to improve the correlation performance, compared to the conventional method using the computational integral imaging reconstruction algorithm.

Image Analysis of the Luster of Fabrics with Modified Cross-section Fibers

  • Shin Kyung In;Kim Seong Hun;Kim Jong Jun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • We have investigated the luster of modified cross-sectional fiber fabrics as one of the essential quality estimates for clothing development. We have confirmed an objective evaluation method, and have determined the experimental luster char­acteristics of modified cross-section fibers. The cross-section of the fibers in a fabric affects the appearance of a textile. We used the image analysis method to investigate the luster to determine the critical factors influencing the appearance of modi­fied cross-section fiber fabrics. For similarly structured textiles in a component fabric, clear differences were observed in the fabric weave, density, percentage, and total area of blobs, which is image region. Color played a decisive role in the luster of the textiles, and luster was not significantly influenced by the modified cross-section fabric weave. In addition, the degree of luster did not increase in the order plain to twill to satin for modified cross-sectional fiber fabrics. All the split-type microfi­bers exhibited higher numerical luster values (percentage of pixels, and number and total area of blobs) than sea-island microfibers did. The degree of luster of the modified cross-sectional fiber fabrics was not high at specular reflection angles.

Modified Borda Count Method for Combining Multiple Features of Image Retrieval (영상검색에서의 다중 피쳐 결합을 위한 변형된 보다 카운트 방법)

  • 정세윤;김규헌;전병태;이재연;배영래
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.593-596
    • /
    • 1999
  • In this paper, we propose an image retrieval system using the MBCM(Modified Borda Count method) in CME(Combining Multiple Experts). It combines color-, shape- and texture-based retrieval sub-systems. CME method can complementarily combine results of each retrieval system, which uses different features. There are some problems when the Borda count method in pattern recognition is applied to image retrieval. Thus, we propose a modified Borda count method to solve these problems. In the experiment, our method reduces false positive errors and produces better results than that of each retrieval module that uses only one feature.

  • PDF

Identification Method of Geometric and Filtering Change Regions in Modified Digital Images (수정된 디지털 이미지에서 기하학적 변형 및 필터링 변형 영역을 식별하는 기법)

  • Hwang, Min-Gu;Cho, Byung-Joo;Har, Dong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1292-1304
    • /
    • 2012
  • Recently, digital images are extremely forged by editors or advertisers. Also, amateurs can modify images throughout easy editing programs. In this study, we propose identification and analytical methods for the modified images to figure out those problems. In modified image analysis, we classify two parts; a filtering change and a geometric change. Those changes have an algorithm based on interpolation so that we propose the algorithm which is able to analyze a trace on a modified area. With this algorithm, we implement a detection map of interpolation using minimum filter, laplacian algorithm, and maximum filter. We apply the proposed algorithm to modified image and are able to analyze its modified trace using the detection map.