• Title/Summary/Keyword: Modified Canny Edge Detection

Search Result 5, Processing Time 0.02 seconds

Modified Canny Edge Detection Algorithm for Detecting Subway Platform Screen Door Invasion (지하철 플랫폼 스크린 도어 침범 인식을 위한 변형된 캐니에지 검출 알고리듬)

  • Lee, Ha-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.663-670
    • /
    • 2019
  • The modified Canny edge detection algorithm that can detect the boundary between screen door and platform in the subway is proposed in this paper. Generally, in the subway, the boundary line between the platform and the screen door is darker than the surrounding area. Therefore, an edge image is using the modified bottom-hat transform by considering its characteristics. Double thresholded images with strong edge and weak edge through double thresholding are obtained. An algorithm that detects the boundary invasion between the platform and the screen door is proposed by calculating the length by applying the Hough transform to the double thresholded image and comparing the boundary line length between when there is an object such as a person and when there is no object. In this paper, the results of the proposed modified Canny edge detection algorithm using two different input images according to camera height position are shown by computer simulation.

A Study on Edge Detection using Directional Mask in Impulse Noise Image (임펄스 잡음 영상에서 방향성 마스크를 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.135-140
    • /
    • 2014
  • As the digital image devices are widely used, interests in the software- and the hardware-related image processing become higher and the image processing techniques are applied in various fields such as object recognition, object detection, fingerprint recognition, and etc. For the edge detections Sobel, Prewitt, Laplacian, Roberts and Canny detectors are used and these existing methods can excellently detect the edges of the images without noise. However, in the images corrupted by the impulse noise, these methods are insufficent in noise elimination characteristics, showing unsatisfactory edge detection. Therefore in this paper, in order to obtain excellent edge detection characteristics in the corrupted image by the impulse noise, an detection algorithm is porposed, which uses the central pixel of mask divided by four regions along the axis, calculates the estimated mask according to the representing pixel values in each regions, and detects the final edges by applying the estimates mask and the new directional one.

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles

  • Phromsuwan, U.;Sirisathitkul, C.;Sirisathitkul, Y.;Uyyanonvara, B.;Muneesawang, P.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.311-316
    • /
    • 2013
  • Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Automatic detection of discontinuity trace maps: A study of image processing techniques in building stone mines

  • Mojtaba Taghizadeh;Reza Khalou Kakaee;Hossein Mirzaee Nasirabad;Farhan A. Alenizi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.205-215
    • /
    • 2024
  • Manually mapping fractures in construction stone mines is challenging, time-consuming, and hazardous. In this method, there is no physical access to all points. In contrast, digital image processing offers a safe, cost-effective, and fast alternative, with the capability to map all joints. In this study, two methods of detecting the trace of discontinuities using image processing in construction stone mines are presented. To achieve this, we employ two modified Hough transform algorithms and the degree of neighborhood technique. Initially, we introduced a method for selecting the best edge detector and smoothing algorithms. Subsequently, the Canny detector and median smoother were identified as the most efficient tools. To trace discontinuities using the mentioned methods, common preprocessing steps were initially applied to the image. Following this, each of the two algorithms followed a distinct approach. The Hough transform algorithm was first applied to the image, and the traces were represented through line drawings. Subsequently, the Hough transform results were refined using fuzzy clustering and reduced clustering algorithms, along with a novel algorithm known as the farthest points' algorithm. Additionally, we developed another algorithm, the degree of neighborhood, tailored for detecting discontinuity traces in construction stones. After completing the common preprocessing steps, the thinning operation was performed on the target image, and the degree of neighborhood for lineament pixels was determined. Subsequently, short lines were removed, and the discontinuities were determined based on the degree of neighborhood. In the final step, we connected lines that were previously separated using the method to be described. The comparison of results demonstrates that image processing is a suitable tool for identifying rock mass discontinuity traces. Finally, a comparison of two images from different construction stone mines presented at the end of this study reveals that in images with fewer traces of discontinuities and a softer texture, both algorithms effectively detect the discontinuity traces.