• Title/Summary/Keyword: Modification Vehicle

Search Result 164, Processing Time 0.024 seconds

Construction of Virtual Environment for a Vehicle Simulator (자동차 시뮬레이터의 가상환경 구성에 대한 연구)

  • Chang, Chea-Won;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.158-168
    • /
    • 2000
  • Vehicle driving simulators can provide engineers with benefits on the development and modification of vehicle models. One of the most important factors to realistic simulations is the fidelity given by a motion system and a real-time visual image generation system. Virtual reality technology has been widely used to achieve high fidelity. In this paper the virtual environment including a visual system like a head-mounted display is developed for a vehicle driving simulator system by employing the virtual reality technique. virtual vehicle and environment models are constructed using the object-oriented analysis and design approach. Accordint to the object model a three dimensional graphic model is developed with CAD tools such as Rhino and Pro/E. For the real-time image generation the optimized IRIS Performer 3D graphics library is embedded with the multi-thread methodology. Compared with the single loop apprach the proposed methodology yields an acceptable image generation speed 20 frames/sec for the simulator.

  • PDF

Performance improvement of a vehicle suspension by sensitivity analysis (민간도해석에 의한 자동차 현가장치의 성능개선에 관한 연구)

  • Song, Chuck-Gee;Park, Ho;Oh, Jae-Eung;Yum, Sung-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1464-1473
    • /
    • 1990
  • Optimal design parameters are estimated from the sensitivity function and performance index variation. Suspension design modification for performance improvement and basic materials for practical applications are presented. The linear quarter model of a vehicle suspension is analyzed in order to represent the utilities of sensitivity analysis, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. As an investigation results of sensitivity function for the vibrational amplitude of sprung mass to road profile input, it is shown that the most sensitive parameters are the suspension damping and the suspension stiffness. In order to identify the effects of these two parameters to the performance of suspension system, the performance index variation according to the changes of parameters is considered and then optimal design parameters are determined. It is verified that the system response is improved noticeably in the both of frequency and time domain after the design modification with the optimal parameters.

A Real-Time Graphic Driving Simulator Using Virtual Reality Technique (가상현실을 이용한 실시간 차량 그래픽 주행 시뮬레이터)

  • Jang, Jae-Won;Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.80-89
    • /
    • 2000
  • Driving simulators provide engineers with a power tool in the development and modification stages of vehicle models. One of the most important factors to realistic simulations is the fidelity obtained by a motion bed and a real-time visual image generation algorithm. Virtual reality technology has been widely used to enhance the fidelity of vehicle simulators. This paper develops the virtual environment for such visual system as head-mounted display for a vehicle driving simulator. Virtual vehicle and environment models are constructed using the object-oriented analysis and design approach. Based on the object model, a three-dimensional graphic model is completed with CAD tools such as Rhino and Pro/ENGINEER. For real-time image generation, the optimized IRIS Performer 3D graphics library is embedded with the multi-thread methodology. The developed software for a virtual driving simulator offers an effective interface to virtual reality devices.

  • PDF

Vehicle Routing Problems with Time Window Constraints by Using Genetic Algorithm (유전자 알고리즘을 이용한 시간제약 차량경로문제)

  • Jeon, Geon-Wook;Lee, Yoon-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.75-82
    • /
    • 2006
  • The main objective of this study is to find out the shortest path of the vehicle routing problem with time window constraints by using both genetic algorithm and heuristic. Hard time constraints were considered to the vehicle routing problem in this suggested algorithm. Four different heuristic rules, modification process for initial and infeasible solution, 2-opt process, and lag exchange process, were applied to the genetic algorithm in order to both minimize the total distance and improve the loading rate at the same time. This genetic algorithm is compared with the results of existing problems suggested by Solomon. We found better solutions concerning vehicle loading rate and number of vehicles in R-type Solomon's examples R103 and R106.

Case Study on the continuous pickup and delivery vehicle routing problem in Multi-level Logistic Network based on S automobile Part Logistics Process (다단계 물류 네트워크에서 A/S 부품 집화 및 배송이 연속적으로 발생하는 문제에 관한 사례연구 -자동차 부품 물류 프로세스를 중심으로-)

  • Song, Jun-Woo;Kim, Kyung-Sup;Jeong, Suk-Jae
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.193-204
    • /
    • 2013
  • The growing logistics strategy of a company is to optimize their vehicle route scheduling in their supply chain system. It is very important to analyze for continuous pickups and delivery vehicle scheduling. This paper is a computational study to investigate the effectiveness of continuous pickups and delivery vehicle routing problems. These scheduling problems have 3 subproblems; Inbound Vehicle Routing Problem with Makespan and Pickup, Line-haul Network Problem, and Outbound Vehicle Routing Problem with Delivery. In this paper, we propose 5 heuristic Algorithms; Selecting Routing Node, Routing Scheduling, Determining Vehicle Type with Number and Quantity, and Modification Selecting Routing Node. We apply these Algorithms to S vehicle company. The results of computational experiments demonstrate that proposed methods perform well and have better solutions than other methods considering the basic time and due-date.

Development of Eco-Friendly Range Extension UTV Hybrid Vehicle System (주행거리 확장을 위한 하이브리드형친환경UTV 차량 시스템 개발)

  • Kim, Kee Joo;Won, Si Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1015-1020
    • /
    • 2016
  • An advantage of electric vehicles is that they are environmentally sustainable because they do not emit exhaust gases, such as $CO_2$ or Nox. A disadvantage is the low power performance of the motor and battery source, necessitating a reduction in the weight of the vehicle to increase efficiency. Another disadvantage is that the rechargeable battery enables an electric vehicle to only run for a limited number of miles before requiring electric charging. To solve these problems, the hybrid vehicle has been developed by combining environmental sustainability with the high performance of a conventional internal combustion engine. In this study, an electric UTV (Utility Terrain Vehicle) was transformed into a hybrid vehicle system by outfitting the vehicle with a drive auxiliary power system including a 125 cc internal combustion engine. This modification enabled us to extend the range of the hybrid UTV from 50km to 100km per one electric charging.

Multidisciplinary Design Optimization of Engine Mount with Considering Driveline (구동계를 고려한 엔진 마운트의 다분야 통합 최적설계)

  • 서명원;심문보;김문성;홍석길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 2002
  • This gaper discusses a multidisciplinary design optimization of the engine mounting system to improve the ride quality of a vehicle and to remove the possibility of the resonance between the powertrain system and vehicle systems. The driveline model attempts to support engine mount development by providing sufficient detail for design modification assessment in a modeling environment. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is both decoupling the roll mode ova powertrain and minimizing the vibration transmitted to the vehicle including the powertrain, simultaneously. By applying forced vibration analysis for vehicle systems and mode decouple analysis for the engine mount system, it is shown that improved optimization result is obtained.

Acoustic test of the payload fairing of Korea satellite launch vehicle (소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험)

  • Park, S.H.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF

Vibration reduction of military vehicle frame with using structural dynamic characteristics analysis (구조 동특성 분석을 통한 군용 차량 프레임 진동 저감)

  • Lee, Sang-Jeong;Park, Jong-Beom;Park, No-Cheol;Lee, Jong-Hak;Kim, Han-Shang;Jeong, Eui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.281-284
    • /
    • 2014
  • Unlike ordinary vehicle chassis frame, chassis frame of military vehicle is long and that is operated in harsh driving environment in middle of war. Thus, because large dynamic loads is acting on the frame, it is important to secure the durability of the frame based on the structural dynamic characteristic analysis. The purpose of the study is that the chassis frame is optimized to secure durability of the chassis frame of the military vehicle according to the structural dynamic characteristic analysis. Also, structure optimization are performed using parametric optimization and topology optimization methods.

  • PDF

Parametric Study of a Bogie Tilting Mechanism (대차 틸팅 기구의 매개변수 분석 연구)

  • 김남포;구동회;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.294-299
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed during curve negotiation without any modification of infrastructure. As a study for the optimum design of the tilting mechanism of a tilting vehicle, the kinematics sensitivity of the tilting mechanism was analyzed. Using the geometric relationship of the linkage-type tilting mechanism, the relationship of the parameters and the performance index was defined using nonlinear algebraic equations. With the defined relation, the effect of change in the parameters on the performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational condition in which the tilting vehicle is applied.