• Title/Summary/Keyword: Modelling method

Search Result 1,481, Processing Time 0.026 seconds

Ocean Outfall Modelling with the Particle Tracking Method (입자추적법을 이용한 해양방류구 모델링)

  • Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.563-569
    • /
    • 2002
  • To overcome the weaknesses of conventional finite difference model in pollutant dispersion modelling, the particle tracking method is used. In this study, a three dimensional particle tracking model which can be used in Princeton Ocean Model was developed and verified through the various numerical tests. Usability of the model was also confirmed through the ocean outfall modelling in Tampa Bay, Florida. As it is expected, random walk model showed the less dispersion in a range compared to the conventional finite difference model and its reason is estimated due to an error from numerical diffusion which the conventional model holds. This newly developed model is expected to be used in various ocean dispersion modelling.

A Method of Explosion Modelling Using the Concept of Momentum Trap (모멘텀 트랩 개념을 이용한 폭원모델링 기법)

  • Choi, Byung-Hee;Kang, Myoung-Soo;Ryu, Chang-Ha;Kim, Jae-Woong
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • Recently, as the demand for development and utilization of underground space is increasing worldwide, the blast damaged zone has become a major issue in constructing underground structures. In this study, to verify the explosion modelling method for blast-damaged zone (BDZ) around underground cavern, a series of small-scale test blasts was conducted using the concept of momentum trap. According to the test results, the input parameters to the numerical model (ANSYS LS-DYNA) were corrected. It is concluded that the suggested method of miniature blasting and numerical modelling using the MT concept well simulates the velocity of the MT projectile under given conditions.

A Study on the Detection of Small Arm Rifle Sound Using the Signal Modelling Method (신호 모델링 기법을 이용한 소총화기 신호 검출에 대한 연구)

  • Shin, Mincheol;Park, Kyusik
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.443-451
    • /
    • 2015
  • This paper proposes a signal modelling method that can effectively detect the shock wave(SW) sound and muzzle blast(MB) sound from the gunshot of a small arm rifle. In order to localize a counter sniper in battlefield, an accurate detection of both shock wave sound and muzzle blast sound are the necessary keys in estimating the direction and the distance of the counter sniper. To verify the performance of the proposed algorithm, a real gunshot sound in a domestic military shooting range was recorded and analyzed. From the experimental results, the proposed signal modelling method was found to be superior to the comparative system more than 20% in a shock wave detection and 5% in a muzzle blast detection, respectively.

A Study on method of Using Ultrasonic Transducers With shear wave Polarization Direction (전단파 분극현상을 갖는 초음파 탐촉자 민감도 기법에 관한 연구)

  • 나승우;임광희;송상기;정동화;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.744-747
    • /
    • 2001
  • This paper shows shear wave behavior of CFRP composite laminates as a polar grid form to evaluate vibration pattern of ultrasonic transducers, which gives measured modelling fundamental contents of nondestructive evaluation. Polarized direction can be obtained by using a c-scanner and sensitivity of transducers is founded when using through-transmission method of two transducers. And modelling of vector decomposition is presented based on ply-to-ply method to apply practicable nondestructive evaluation of CFRP laminate lay up. This modelling decomposes the transmission of linearly polarized wave into orthogonal components through each ply of a laminate. It is found that a high provable shows between the model and experimental developed in characterizing layup of CFRP composite laminates.

  • PDF

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Finite element modelling of reinforced concrete structures with laboratory verification

  • Cheng, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.593-609
    • /
    • 1995
  • The presence of reinforcement has a significant influence on the stress-strain behaviour of reinforced concrete structures, expecially when the failure stage of the structures is approached. In the present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement coefficient, Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.

MULTIFACTOR MODELLING IN CONSTRUCTION MANAGEMENT

  • Leszek Janusz;Oleg Kaplinski
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.633-637
    • /
    • 2005
  • The paper presents a multifactor modelling of construction processes. There are three phases of the proposed extended procedure. Tools for these phases from chronometric test to verifying of the assumed model are indicated. Apart from the classic verification activities the method of artificial neural networks has been successfully applied. The paper presents the usage of these tools to model the process of assembly of structural corrugated steel plate structures.

  • PDF

An Experimental Analysis for Axisymetric Hot Extrusion Through Square Dies Using Visioplasticity Method (변형가시화법을 이용한 열간 축대칭 평금형 압출의 실험적 해석)

  • 엄태복;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.107-113
    • /
    • 1995
  • To investigate the behavior of platic deformation inaxisymmetric hot extrusion through square dies, the physical modelling with the plasticine as a model material is carried out at the room temperature. Some mechanical properties of the model material are determined by compression and ring compression tests. Visioplasticity method using experimetal grid distortion is introduced to anlayze the plastic flow, strain rate and strain distribution.

  • PDF

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

A Case Study on Blasting Vibration 3D Modelling with Electronic-Delay System Detonator (전자발파시스템을 이용한 발파진동 3D 모델링 연구 사례)

  • Kim, Gab-Su;Yang, Ruilin;Kim, Yong-Gyun;Kang, Dae-Woo
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.131-142
    • /
    • 2014
  • This study is using electronic-delay system detonator which can input an accurate detonating delay, compare predicted blasting vibration level derived from vibration 3D modelling with real measured blasting vibrations, and then considered modelling results are able to apply blast design. It confirmed there are certain relations between modelling and real vibration data, so modelling prediction method also can be apply design various blast conditions and prediction equation of blast vibration.