• Title/Summary/Keyword: Modeling and simulation technique

Search Result 589, Processing Time 0.027 seconds

Design and Implementation of ATO On-board Software Using UML Modeling Tool (UML 모델링 도구를 이용한 ATO 차상 소프트웨어의 설계 및 구현)

  • Yoon, Yeong-Hwan;Bang, Yung;Um, Jung-Kyou;Cho, Yong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.384-389
    • /
    • 2008
  • In this paper, we propose a UML modeling of ATO on-board software. An automatic train operation (ATO) system is a real-time control system, which operates a train without a manual operation by a driver. For the safe and comfortable service, real-time embedded software for ATO on-board equipment should have both of high performance and reliability. UML-based object-oriented modeling technique is introduced and used widely to design software that satisfies this requirement. We used Rhapsody, which is a modeling tool for real-time embedded software, to model the construction and the behavior of ATO on-board equipment. As a result, ATO on-board software which performs the profile calculation and the real-time speed control is designed and implemented. The brief modeling result including behavioral characteristics and the simulation results are presented.

  • PDF

Porous modeling for the prediction of pressure drop through a perforated strainer (타공형 스트레이너의 압력강하 예측을 위한 다공성모델링)

  • Jung, Il-Sun;Park, Jae-Hyun;Bae, Jae-Hwan;Kang, Sangmo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.358-367
    • /
    • 2013
  • In the present paper, we apply a porous modelling technique to accurately predict the pressure drop through the strainer by replacing all or some of the filter composed of perforated plates with porous media and there imposing the streamwise and transverse loss coefficients required according to the Forchheimer law and then confirm its effectiveness. At first, the streamwise coefficient is obtained by performing a simple simulation on the pipe flow mimicking the hole flow. Subsequently, the transverse coefficient is obtained by setting a unit pattern to have common flow loss characteristics with the repeated shape patterns in the filter, then performing numerical simulations on the prototype and porous model of the unit shape pattern, and finally comparing their results of pressure drop. To validate the applied modeling technique, we perform the numerical simulation with the two specified loss coefficients on a whole shape of strainer and compare the modeling results with those of the corresponding prototype numerical simulation. Comparison indicates that the modeling technique can predict the pressure drop and flow characteristics comparatively accurately and save the number of nodes closely related to the computational cost (CPU and memory) by about 3~4 times compared with the prototype simulation.

Development of A Simulation Technique for Arc-Rail Based GB-SAR System (원형레일 기반의 지상 SAR 시스템 시뮬레이션 기법 개발)

  • Kim, Kwang-Eun;Cho, Seong-Jun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.107-112
    • /
    • 2009
  • A technique for the simulation of various kinds of ground based SAR system was developed. This is an ancillary research for the development of an ArcSAR system which uses an arc-rail as a platform for the antenna movement instead of linear rail. The results of applying conventional Deramp FFT based SAR focusing algorithm to the simulated raw signal of linear rail type ground based SAR for the point targets showed that the developed simulation technique generated accurate GB-SAR raw signal. The developed technique is now being used for the development and verification of SAR focusing algorithm for the arc-rail type ground based SAR. The simulation technique is also expected to be very useful for the purpose oriented system design and operation planning of ground based SAR technique.

Information Modeling for BIM Based Design of Precast Concrete Platform (BIM 기반의 설계를 위한 프리캐스트 콘크리트 승강장의 정보모델링)

  • Jeong, Ji-Sook;Lee, Kwang-Myong;Park, Ki-Hyun;Park, Young-Shik
    • Journal of KIBIM
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The construction method using PC(Precast Concrete) has been widely used because the method can shorten the construction period and improve construction quality. In this paper, through the analysis of present design process for PC railway platform, design parameters on the geometry and properties were extracted and 3D information models for PC railway platform were constructed by the parametric modeling technique. Furthermore, the interface module was developed to link 3D models to the structural analysis/design sheet and database program using VBA(Visual Basic Application). This information model could be used in various areas including structural analysis and design, 2D drawing, quantity estimation and 4D simulation including clash detection.

Nobel Approaches of Intelligent Load Model for Transient Stability Analysis (과도안정도 해석을 위한 지능형 부하모델의 새로운 접근법)

  • Lee, Jong-Pil;Lim, Jae-Yoon;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.96-101
    • /
    • 2008
  • The field of load modeling has attracted the attention since it plays an important role for improving the accuracy of stability analysis and power flow estimation. Also, load modeling is an essential factor in the simulation and evaluation of power system performance. However, conventional load modeling techniques have some limitations with respect to accuracy for nonlinear and composite loads. Thus, precision load modeling technique and reasonable application method is needed for more accurate power system analysis. In this paper, we develop an intelligent load modeling method based. on neural network and application techniques for power system. The proposed method makes it possible to effectively estimate the load model for nonlinear models as well as linear models. Reasonable application method is also proposed for stability analysis. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

An Economic Ripple Effect Analysis of Domestic Supercomputing Modeling and Simulation (슈퍼컴퓨팅 모델링 및 시뮬레이션의 산업연관분석 기반 경제적 파급효과 분석)

  • Kim, Myungil;Park, Sung-Uk;Kim, Jaesung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.340-347
    • /
    • 2016
  • Since the 1970s, manufacturing has been one of the key driving forces that has led to Korea's economic growth. However, this growth rate has been reduced significantly since the 2000s, and shows that revenues and employment are steadily decreasing. In addition, while manufacturing investment in Korea has dropped sharply, the United States, Germany, Japan, and other major countries have increased investment in manufacturing. These countries have promoted manufacturing innovation strategies that include the convergence of information and communications technologies (ICT) and manufacturing. For manufacturing innovation, it is important for time and cost savings required for product development to be achieved by changes in the production process, especially product design. Modeling and simulation (M&S) is a process that replaces physical product design, mockup making, and testing, with virtual product creation (modeling) and engineering analysis (simulation). In this paper, we analyze the economic ripple effect of supercomputing M&S using an input-output model technique based on the input-output tables published by the Bank of Korea. When we set the M&S budget (about US$16 million for the last 10 years) of the Korea Institute of Science and Technology Information (KISTI) as input coefficients, the effect on production inducement, value-added inducement, and employment inducement was analyzed to be US$24 million, US$13.4 million, and 267, respectively.

Improvement on Large-Eddy Simulation Technique of Turbulent Flow (난류유동의 Large-Eddy Simulation 기법의 알고리즘 향상에 관한 연구)

  • 앙경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1691-1701
    • /
    • 1995
  • Two aspects of Large-Eddy Simulation(LES) are investigated in order to improve its performance. The first one is on how to determine the model coefficient in conjunction with a dynamic subgrid-scale model, and the second one is on a wall-layer model(WLM) which allows one to skip near-wall regions to save a large number of grid points otherwise required. Especially, a WLM suitable for a separated flow is considered. Firstly, an averaging technique to calculate the model coefficient of dynamic subgrid-scale modeling(DSGSM) is introduced. The technique is based on the concept of local averaging, and useful to stabilize numerical solution in conjunction with LES of complex turbulent flows using DSGSM. It is relatively simple to implement, and takes very low overhead in CPU time. It is also able to detect the region of negative model coefficient where the "backscattering" of turbulence energy occurs. Secondly, a wall-layer model based on a local turbulence intensity is considered. It locally determines wall-shear stresses depending on the local flow situations including separation, and yields better predictions in separated regions than the conventional WLM. The two techniques are tested for a turbulent obstacle flow, and show the direction of further improvements.rovements.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Systematic Dynamic Modeling of an Integrated Single-stage Power Converter

  • Choi, Ki-Young;Lee, Kui-Jun;Kim, Yong-Wook;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2288-2296
    • /
    • 2015
  • This paper proposes a novel systematic modeling approach for an integrated single-stage power converter in order to predict its dynamic characteristics. The basic strategy of the proposed modeling is substituting the internal converters with an equivalent current source, and then deriving the dynamic equations under a standalone operation using the state-space averaging technique. The proposed approach provides an intuitive modeling solution and simplified mathematical process with accurate dynamic prediction. The simulation and experimental results by using an integrated boost-flyback converter prototype provide verification consistent with theoretical expectations.