• Title/Summary/Keyword: Modeling and control

Search Result 4,372, Processing Time 0.042 seconds

App]ication of Supervisory Control Theory to Modeling and Control of a Fleet of Mobile Robots (다중이동로봇의 모델링 및 제어를 위한 관리제어이론의 응용에 관한 연구)

  • 신성영;조광현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.59-59
    • /
    • 2000
  • In this paper, we present a framework for modeling and control of multiple mobile robots which cowork within a bounded workspace and limited resources. To achieve this goal, we adopt a formalism of discrete event system and supervisory control theory based on Petri nets. We can divide our whole story into two parts: first, we search the shortest path using the distance vector algorithm, and then we construct the control scheme from which a number of mobile robots can work within a bounded workspace without any collision. The use of Petri net modeling allows us In synthesize a controller which achieves a control specification for the desired closed-loop behavior efficiently. Finally, the usefulness of the proposed Petri net formalism is illustrated by a simulation study.

  • PDF

Rapid Local Modeling in Construction Automation

  • Kwon Soon-Wook
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.173-179
    • /
    • 2003
  • Techniques to rapidly model local spaces, using 3D range data can enable implementation of: (1) real-time obstacle avoidance for improved safety, (2) advanced automated equipment control modes, and (3) as-built data acquisition for improved quantity tracking, engineering, and project control systems. The objective of the research reported here was to introduce current rapid local modeling techniques and develop rapid local spatial modeling tools.

  • PDF

Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates (확장된 좌표계 전환기법에 의한 모바일 로봇의 기구학 모델링)

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 2002
  • A kinematic modeling method is proposed which models the sliding and skidding at the wheels as pseudo joints and utilizes those pseudo joint variables as augmented variables. Kinematic models of various type of wheels are derived based on this modeling method. Then, the transfer method of augmented generalized coordinates is applied to obtain inverse and forward kinematic models of mobile robots. The kinematic models of five different types of planar mobile robots are derided to show the effectiveness of the proposed modeling method.

Development of Photovoltaic Modeling and Generation System using PLECS in MATLAB (MATLAB 기반의 PLECS를 이용한 태양광 모델링 및 발전시스템 개발)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Lee, Young-Kuk;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2379-2384
    • /
    • 2009
  • In this paper, based on MATLAB which has characteristic that is simply applied to control algorithm and source modeling, photovoltaic modeling is implemented. Photovoltaic modeling is similarly performed PV array and simulated. Also, in order to output maximum power of PV, MPPT control is simulated. Moreover, simulation of converter is performed by means of PLECS (Piece wise Linear Electrical Simulation) which is easily made schematic of power electronics. Also, we compare simulation results and Sharp PV module and Suntech PV module. Finally, informative simulation of PV generation system is provided.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

Lumped-parameter modeling of flexible manipulator dynamics

  • Kim, Jin-Soo;Konno, Atsushi;Uchiyama, Masaru;Usui, Kazuaki;Yoshimura, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper, we discuss the modeling of flexible manipulators. In the modeling of flexible manipulators, there are two approaches: one is based on the distributed-parameter modeling and the other on the lumped-parameter modeling. The former has been applied to control and analysis of simple manipulator requiring precision, while the latter has been applied to multi-link spatial manipulator, because of the model's simplicity. We have already proposed the lumped-parameter modeling method for simple manipulator, and investigate that model of how much degree of precision we can get. The experiments and simulations are performed, comparing these results, the approximate performance of our modeling method is discussed.

  • PDF

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.650-655
    • /
    • 2006
  • Dynamic modeling and active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

Effect of Flipped Learning on System Modeling and Control Course (시스템 모델링 및 제어 수업의 플립드 러닝(Flipped Learning)의 적용 및 그 효과에 관한 연구)

  • Kim, Yeon;Ahn, Changsun
    • Journal of Engineering Education Research
    • /
    • v.19 no.5
    • /
    • pp.72-77
    • /
    • 2016
  • The flipped learning is currently suggested in engineering education, and several universities already have used it. However, research rarely examines whether using such special method in engineering education is effective to improve students' learning achievement. To illuminate this issue, we collected the data of students' achievement for two years from students who took system modeling and control course and analyzed them. Overall, the flipped learning is statistically effective to improve students' learning achievement about system modeling and control.

Development of Magnetic Force Modeling Equipment for Magnetic Levitation Systems (자기부상시스템의 자기력 모델링 시스템 개발)

  • Yang, Ji-Hyuk;Kim, Seuk-Yun;Lee, Young-Sam;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.321-327
    • /
    • 2011
  • This paper proposes an equipment and an algorithm for modeling the magnetic force of electromagnets in magnetic levitation systems. We assume that the magnetic force model is represented in terms of a 2D lookup table. The 2D lookup table is constructed by applying noncausal filtering and interpolation to data measured by the proposed modeling equipment. The proposed modeling equipment is designed such that it can measure the magnetic force exerted on the levitation object while it changes the voltage applied to the electromagnet and position of the levitation object. The algorithm of making a 2D lookup table has two stages. The data measured by the proposed modeling equipment is smoothed by a noncausal filter and then the 2D lookup table is obtained by interpolating filtered data. The proposed modeling method has advantages of time-saving, model consistency, and chance of automation for mass production. We show the validity of proposed method through control experiments.

First Principle Approach to Modeling of Primitive Quad Rotor

  • Sudiyanto, Tata;Muljowidodo, Muljowidodo;Budiyono, Agus
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.148-160
    • /
    • 2009
  • By the development of recent technology, a new variant of rotorcrafts having four rotors start drawing attention from aerial-robotics engineers more than before. Its potential spans from just being control device test bed to performing difficult task such as carrying surveillance device to unreachable places. In this regards, modeling a quad-rotor is significant in analyzing its dynamic behavior and in synthesizing control system for such a vehicle. This paper summarizes the modeling of a mini quad-rotor aerial vehicle. A first principle approach is considered for deriving the model based on Euler-Newton equations of motion. The result of the modeling is a simulation platform that is expected to acceptably predict the dynamic behavior of the quad-rotor in various flight conditions. Linear models associated with different flight condition can be extracted for the purpose of control synthesis.