• Title/Summary/Keyword: Modeling and Simulation Tools

Search Result 191, Processing Time 0.029 seconds

COMPUTER AIDED SCHECULING MODEL OF MATERIALS HANDSLING IN CHEMICAL ANALYSIS FLOOR

  • Fujino, Yoshikazu;Motomatu, Hiroyoshi;Kurono, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.31-34
    • /
    • 1995
  • The automated chemical analysis shop floor are developed for the environmental pollution problems in our chemical analysis center. This shop floor have the several equipments include weight, pour, dry, heater, boiler, mixture, spectroscopy etc. And the material handling components are made up by the stored stack, conveyore, turntables, robot etc. Computer simulation has been an important tool for these complete design problem. We have designed the arangement of chemical equipments and material flow systems by using the simulator "AutoModII". "AutoMoII" is one of the advanced simulator, CAD-like drawing tools with a powerful, engineering oriented language to model control logic and material flow. The result is the modeling of the chemical analysis system in accurate, three dimensional detail. We could designed the set able layout and scheduling system by using the AutoMoII simulator. AutoMoII simulator.

  • PDF

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF

Development of Tissue-Tool Interaction Simulation Algorithms for Rotator Cuff Surgery Scenario in Arthroscopic Surgery Training Simulator

  • Jo, Kyungmin;Bae, Eunkyung;You, Hyeonseok;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.154-164
    • /
    • 2020
  • Various simulator systems for surgery training have been developed and recently become more widely utilized with technology advancement and change in medical education adopting actively simulation-based training. The authors have developed tissue-instrument interaction modeling and graphical simulation algorithms for an arthroscopic surgery training simulator system. In this paper, we propose algorithms for basic surgical techniques, such as cutting, shaving, drilling, grasping, suturing and knot tying for rotator cuff surgery. The proposed method constructs a virtual 3-dimensional model from actual patient data and implements a real-time deformation of the surgical object model through interaction between ten types of arthroscopic surgical tools and a surgical object model. The implementation is based on the Simulation Open Framework Architecture (SOFA, Inria Foundation, France) and custom algorithms were implemented as pulg-in codes. Qualitative review of the developed results by physicians showed both feasibility and limitations of the system for actual use in surgery training.

Current Industrial and Technological Trends in Satellite Simulator (위성시뮬레이터 산업기술동향)

  • Lee, Hoon-Hee;Park, Young-Woong;Park, Keun-Joo;Kim, Dae-Kwan;Lee, Sun-Ho;Yong, Ki-Lyuk
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.110-118
    • /
    • 2011
  • In this paper, design techniques and technological trends applied on simulator development, which are based on Model Driven Architecture, are described. The methodology, process and modeling support tools for development of simulation software are introduced with both satisfaction of user's requirements and benefit to simulator developers of reducing cost. In addition, contents in ECSS standard for reusability of simulation model and its usages applied on industries are presented and major features of current technological changes with highlights of key-word are discussed.

  • PDF

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Da Li;Ikjae Lee;Cong Yi;Wei Gao;Chunhui Song;Shenglei Fu;Moohyun Kim;Alex Ran;Tuanjie Liu
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.287-312
    • /
    • 2023
  • The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

A Basic Study on Utilization of Building Information for n Internet of Things (IoT) Simulation System Development (사물인터넷 시뮬레이션 시스템 개발을 위한 건물정보의 활용에 관한 기초연구)

  • Yu, Jeong-Hyun;Lee, Yun-Gil
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.1
    • /
    • pp.867-874
    • /
    • 2018
  • This study aims to develop a sort of expert system to simulate Internet of Things (IoT) service in architectural design alternatives and enhance the simulation performance using building information. The proposed protype system, named iotBIM, visualizes human behaviors and IoT services in a virtual place that is automatically generated from among design alternatives. We use commercial building information modeling (BIM) authoring tool for the development of iotBIM. The decision to develop iotBIM on the BIM platform was made because BIM tools already generate precise 3D models of design alternatives; iotBIM is plugged into the BIM tool as a simulation module. In the midst of the design process, architectural designers can activate iotBIM to investigate and establish IoT services that accord visually with design alternatives. The purpose of this study is to provide a theoretical and technological basis for the ultimate goal of this study.

The Role of PK/PD Modeling and Simulation in Model-based New Drug Development (모델 기반학적 신약개발에서 약동/약력학 모델링 및 시뮬레이션의 역할)

  • Yun, Hwi-Yeol;Baek, In-Hwan;Seo, Jeong-Won;Bae, Kyung-Jin;Lee, Mann-Hyung;Kang, Won-Ku;Kwon, Kwang-Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.18 no.2
    • /
    • pp.84-96
    • /
    • 2008
  • In the recent, pharmacokinetic (PK)/pharmacodynamic (PD) modeling has appeared as a critical path tools in new drug development to optimize drug efficacy and safety. PK/PD modeling is the mathematical approaches of the relationships between PK and PD. This approach in new drug development can be estimated inaccessible PK and PD parameters, evaluated competing hypothesis, and predicted the response under new conditions. Additionally, PK/PD modeling provides the information about systemic conditions for understanding the pharmacology and biology. These advantages of PK/PD model development are to provide the early decision-making information in new drug development process, and to improve the prediction power for the success of clinical trials. The purpose of this review article is to summarize the PK/PD modeling process, and to provide the theoretical and practical information about widely used PK/PD models. This review also provides model schemes and the differential equations for the development of PK/PD model.

  • PDF

BUILDING INFORMATION MODELING (BIM)-BASED DESIGN OF ENERGY EFFICIENT BUILDINGS

  • Cho, Chung-Suk;Chen, Don;Woo, Sungkwon
    • Journal of KIBIM
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • With the increased awareness of energy consumption as well as the environmental impact of building operations, architects, designers and planners are required to place more consideration on sustainability and energy performance of the building. To ensure most of those considerations are reflected in the building performance, critical design decisions should be made by key stakeholders early during the design development stage. The application of BIM during building energy simulations has profoundly improved the energy analysis process and thus this approach has gained momentum. However, despite rapid advances in BIM-based processes, the question still remains how ordinary building stakeholders can perform energy performance analysis, which has previously been conducted predominantly by professionals, to maximize energy efficient building performance. To address this issue, we identified two leading building performance analysis software programs, Energy Plus and IES (IES ), and compared their effectiveness and suitability as BIM-based energy simulation tools. To facilitate this study, we examined a case study on Building Performance Model (BPM) of a single story building with one door, multiple windows on each wall, a slab and a roof. We focused particularly on building energy performance by differing building orientation and window sizes and compared how effectively these two software programs analyzed the performance. We also looked at typical decision-making processes implementing building energy simulation program during the early design stages in the U.S. Finally, conclusions were drawn as to how to conduct BIM-based building energy performance evaluations more efficiently. Suggestions for further avenues of research are also made.

Evaluation Toolkit for K-FPGA Fabric Architectures (K-FPGA 패브릭 구조의 평가 툴킷)

  • Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.15-25
    • /
    • 2012
  • The research on the FPGA CAD tools in academia has been lacking practicality due to the underlying FPGA fabric architecture which is too simple and inefficient to be applied for commercial FPGAs. Recently, the database of placement positions and routing graphs on commercial FPGA architectures has been built, and provided for enabling the academic development of placement and routing tools. To extend the limit of academic CAD tools even further, we have developed the evaluation toolkit for the K-FPGA architecture which is under development. By providing interface for exchanging data with a commercial FPGA toolkit at every step of mapping, packing, placement and routing in the tool chain, the toolkit enables individual tools to be developed without waiting for the results of the preceding step, and with no dependency on the quality of the results, and compared in detail with commercial tools at any step. Also, the fabric primitive library is developed by extracting the prototype from a reporting file of a commercial FPGA, restructuring it, and modeling the behavior of basic gates. This library can be used as the benchmarking target, and a reference design for new FPGA architectures. Since the architecture is described in a standard HDL which is familiar with hardware designers, and read in the tools rather than hard coded, the tools are "data-driven", and tolerable with the architectural changes due to the design space exploration. The experiments confirm that the developed library is correct, and the functional correctness of applications implemented on the FPGA fabric can be validated by simulation. The placement and routing tools are under development. The completion of the toolkit will enable the development of practical FPGA architectures which, in return, will synergically animate the research on optimization CAD tools.

The impact of fuel depletion scheme within SCALE code on the criticality of spent fuel pool with RBMK fuel assemblies

  • Andrius Slavickas;Tadas Kaliatka;Raimondas Pabarcius;Sigitas Rimkevicius
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4731-4742
    • /
    • 2022
  • RBMK fuel assemblies differ from other LWR FA due to a specific arrangement of the fuel rods, the low enrichment, and the used burnable absorber - erbium. Therefore, there is a challenge to adapt modeling tools, developed for other LWR types, to solve RBMK problems. A set of 10 different depletion simulation schemes were tested to estimate the impact on reactivity and spent fuel composition of possible SCALE code options for the neutron transport modelling and the use of different nuclear data libraries. The simulations were performed using cross-section libraries based on both, VII.0 and VII.1, versions of ENDF/B nuclear data, and assuming continuous energy and multigroup simulation modes, standard and user-defined Dancoff factor values, and employing deterministic and Monte Carlo methods. The criticality analysis with burn-up credit was performed for the SFP loaded with RBMK-1500 FA. Spent fuel compositions were taken from each of 10 performed depletion simulations. The criticality of SFP is found to be overestimated by up to 0.08% in simulation cases using user-defined Dancoff factors comparing the results obtained using the continuous energy library (VII.1 version of ENDF/B nuclear data). It was shown that such discrepancy is determined by the higher U-235 and Pu-239 isotopes concentrations calculated.