• Title/Summary/Keyword: Modeling and Simulation

Search Result 6,427, Processing Time 0.04 seconds

Infrared Characteristics of Some Flash Light Sources (섬광의 적외선 특성 연구)

  • Lim, Sang-Yeon;Park, Seung-Man
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • To effectively utilize a flash and predict its effects on an infrared device, it is essential to know the infrared characteristics of the flash source. In this paper, a study of the IR characteristics of flash light sources is carried out. The IR characteristics of three flash sources, of which two are combustive and the other is explosive, are measured with an IR characteristic measurement system over the middle- and long-wavelength infrared ranges. From the measurements, the radiances over the two IR ranges and the radiative temperatures of the flashes are extracted. The IR radiance of flash A is found to be the strongest among the three, followed by those of sources C and B. It is also shown that the IR radiance of flash A is about 10 times stronger than that of flash B, even though these two sources are the same type of flash with the same powder. This means that the IR radiance intensity of a combustive flash source depends only on the amount of powder, not on the characteristics of the powder. From the measured radiance over MWIR and LWIR ranges for each flashes, the radiative temperatures of the flashes are extracted by fitting the measured data to blackbody radiance. The best-fit radiative temperatures (equivalent to black-body temperatures) of the three flash sources A, B, and C are 3300, 1120, and 1640 K respectively. From the radiance measurements and radiative temperatures of the three flash sources, it is shown that a combustive source radiates more IR energy than an explosive one; this mean, in turn, that the effects of a combustive flash on an IR device are more profound than those of an explosive flash source. The measured IR radiances and radiative temperatures of the flash sources in this study can be used to estimate the effects of flashes on various IR devices, and play a critical role for the modeling and simulation of the effects of a flash source on various IR devices.

Analysis of the effect of long-term water supply improvement by the installation of sand dams in water scarce areas (물부족 지역에서 샌드댐 설치에 의한 장기 물공급 개선 효과 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.999-1009
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area for water welfare that does not have a local water supply system. Here, water is supplied to the village by using a small-scale water supply facility that uses underground water and underground water as the source. To solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed near the valley river, and this facility has been operating since May 2022. In this study, in order to evaluate the reliability of water supply when a sand dam is assumed during a drought in the past, groundwater runoff simulation results using MODFLOW were used to generate inflow data from 2011 to 2020, an unmeasured period. After performing SWAT-K basin hydrologic modeling for the watershed upstream of the existing water intake source and the sand dam, the groundwater runoff was calculated, and the relative ratio of the monthly groundwater runoff for the previous 10 years to the monthly groundwater runoff in 2021 was obtained. By applying this ratio to the 2021 inflow time series data, historical inflow data from 2011 to 2020 were generated. As a result of analyzing the availability of water supply during extreme drought in the past for three cases of demand 20 m3/day, 50 m3/day, and 100 m3/day, it can be confirmed that the reliability of water supply increases with the installation of sand dams. In the case of 100 m3/day, it was analyzed that the reliability exceeded 90% only when the existing water intake source and the sand dam were operated in conjunction. All three operating conditions were evaluated to satisfy 50 m3/day or more of demand based on 95% reliability of water supply and 30 m3/day or more of demand based on 99% of reliability.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: II. Effect of Thermodynamic Equations of State on Compression and Transport Process (이산화탄소 해양지중저장 처리를 위한 공정 설계: II. 열역학 상태방정식이 압축 및 수송 공정에 미치는 영향 평가)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.191-198
    • /
    • 2008
  • To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. $CO_2$ capture process from the major point sources such as power plants, transport process from the capture sites to storage sites and storage process to inject $CO_2$ into the deep marine geological structure can be simulate with numerical modeling. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. We also studied the effect of thermodynamic equation of state in designing the compression and transport process. As a results of comparison of numerical calculations, all relevant equation of state excluding ideal equation of state showed similar compression behavior in pure $CO_2$. On the other hand, calculation results of BWRS, PR and PRBM showed totally different behavior in compression and transport process of captured $CO_2$ mixture from the oxy-fuel combustion coal-fired plants. It is recommended to use PR or PRBM in designing of compression and transport process of $CO_2$ mixture containing NO, Ar and $O_2$.

  • PDF

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.