• Title/Summary/Keyword: Modeling and Prediction

Search Result 1,889, Processing Time 0.027 seconds

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Service Prediction-Based Job Scheduling Model for Computational Grid (계산 그리드를 위한 서비스 예측 기반의 작업 스케쥴링 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.29-33
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes the service prediction-based job scheduling model and present its algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts a processing time of each processing component and distributes a job to processing component with minimum processing time. This paper implements the job scheduling model on the DEVSJAVA modeling and simulation environment and simulates with a case study to evaluate its efficiency and reliability Empirical results, which are compared to the conventional scheduling policies such as the random scheduling and the round-robin scheduling, show the usefulness of service prediction-based job scheduling.

  • PDF

A Study on the Application of Modeling to predict the Distribution of Legally Protected Species Under Climate Change - A Case Study of Rodgersia podophylla - (기후변화에 따른 법정보호종 분포 예측을 위한 종분포모델 적용 방법 검토 - Rodgersia podophylla를 중심으로 -)

  • Yoo, Youngjae;Hwang, Jinhoo;Jeon, Seong-woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.29-43
    • /
    • 2024
  • Legally protected species are one of the crucial considerations in the field of natural ecology when conducting environmental impact assessments (EIAs). The occurrence of legally protected species, especially 'Endangered Wildlife' designated by Ministry of Environment, significantly influences the progression of projects subject to EIA, necessitating clear investigations and presentations of their habitats. In perspective of statistics, a minimum of 30 occurrence coordinates is required for population prediction, but most of endangered wildlife has insufficient coordinates and it posing challenges for distribution prediction through modeling. Consequently, this study aims to propose modeling methodologies applicable when coordinate data are limited, focusing on Rodgersia podophylla, representing characteristics of endangered wildlife and northern plant species. For this methodology, 30 random sampling coordinates were used as input data, assuming little survey data, and modeling was performed using individual models included in BIOMOD2. After that, the modeling results were evaluated by using discrimination capacity and the reality reflection ability. An optimal modeling technique was proposed by ensemble the remaining models except for the MaxEnt model, which was found to be less reliable in the modeling results. Alongside discussions on discrimination capacity metrics(e.g. TSS and AUC) presented in modeling results, this study provides insights and suggestions for improvement, but it has limitations that it is difficult to use universally because it is not a study conducted on various species. By supporting survey site selection in EIA processes, this research is anticipated to contribute to minimizing situations where protected species are overlooked in survey results.

Fuzzy Modeling and Robust Stability Analysis of Wind Farm based on Prediction Model for Wind Speed (풍속 예측모델 기반 풍력발전단지의 퍼지 모델링 및 강인 안정도 해석)

  • Lee, Deogyong;Sung, Hwa Chang;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This paper proposes the fuzzy modeling and robust stability analysis of wind farm based on prediction model for wind speed. Owing to the sensitivity of wind speed, it is necessary to study the dynamic equation of the variable speed wind turbine. In this paper, based on the least-square method, the wind speed prediction model which is varied by the surrounding environment is proposed so that it is possible to evaluate the practicability of our model. And, we propose the composition of intelligent wind farm and use the fuzzy model which is suitable for the design of fuzzy controller. Finally, simulation results for wind farm which is modeled mathematically are demonstrated to visualize the feasibility of the proposed method.

Modeling of Multimedia Internet Transmission Rate Control Factors Using Neural Networks (멀티미디어 인터넷 전송을 위한 전송률 제어 요소의 신경회로망 모델링)

  • Chong Kil-to;Yoo Sung-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • As the Internet real-time multimedia applications increases, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example satisfying this necessity. The TCP-Friendly Rate Control (TFRC) is an UDP-based protocol that controls the transmission rate that is based on the available round trip time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used in the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.

Developing an User Location Prediction Model for Ubiquitous Computing based on a Spatial Information Management Technique

  • Choi, Jin-Won;Lee, Yung-Il
    • Architectural research
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • Our prediction model is based on the development of "Semantic Location Model." It embodies geometrical and topological information which can increase the efficiency in prediction and make it easy to manipulate the prediction model. Data mining is being implemented to extract the inhabitant's location patterns generated day by day. As a result, the self-learning system will be able to semantically predict the inhabitant's location in advance. This context-aware system brings about the key component of the ubiquitous computing environment. First, we explain the semantic location model and data mining methods. Then the location prediction model for the ubiquitous computing system is described in details. Finally, the prototype system is introduced to demonstrate and evaluate our prediction model.

Forecasting Ozone Concentration with Decision Support System (의사 결정 구조에 의한 오존 농도예측)

  • 김재용;김태헌;김성신;이종범;김신도;김용국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.368-368
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Since the mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, modeling of ozone prediction system has many problems and results of prediction are not good performance so far. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

A Numerical Study on Temperature Prediction Bias using FDS in Simulated Thermal Environments of Fire (모사된 화재의 열적환경에서 FDS를 이용한 온도 예측오차에 관한 수치해석 연구)

  • Han, Ho-Sik;Kim, Bong-Jun;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.14-20
    • /
    • 2017
  • A numerical study was conducted to identify the predictive performance for the bare-bead thermocouple (TC) using FDS (Fire Dynamics Simulator) in simulated thermal environments of fire. A relative prediction bias of TC temperature calculated from reverse-radiation correction by FDS was evaluated with the comparison of previous experimental data. As a result, it was identified that the TC temperatures predicted by FDS were lower than the temperatures measured by bare-bead TC for the ranges of heat flux and gas temperature considered. The relative prediction bias of TC temperature by FDS was gradually increased with the increase in radiative heat flux and also significantly increased with the decrease in the gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the TC temperature predicted by FDS had the relative bias of approximately -20% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. It is predicted from the present study that more accurate validation of fire modeling will be possible with the quantitative prediction bias occurred in the process of reverse-radiation correction of temperature predicted by FDS.

Tree-based Approach to Predict Hospital Acquired Pressure Injury

  • Hyun, Sookyung;Moffatt-Bruce, Susan;Newton, Cheryl;Hixon, Brenda;Kaewprag, Pacharmon
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Despite technical advances in healthcare, the rates of hospital-acquired pressure injury (HAPI) are still high although many are potentially preventable. The purpose of this study was to determine whether tree-based prediction modeling is suitable for assessing the risk of HAPI in ICU patients. Retrospective cohort study has been carried out. A decision tree model was constructed with Age, Weight, eTube, diabetes, Braden score, Isolation, and Number of comorbid conditions as decision nodes. We used RStudio for model training and testing. Correct prediction rate of the final prediction model was 92.4 and the Area Under the ROC curve (AUC) was 0.699, which means there is about 70% chance that the model is able to distinguish between HAPI and non-HAPI. The results of this study has limited generalizability as the data were from a single academic institution. Our research finding shows that the data-driven tree-based prediction modeling may potentially support ICU sensitive risk assessment for HAPI prevention.