• Title/Summary/Keyword: Modeling and Design

Search Result 6,947, Processing Time 0.043 seconds

Geometric Constraint Management for Sweeping and Boolean Operations (스위핑과 불리언 연산에 대한 형상 구속조건 관리)

  • 김웅주;정채봉;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.301-311
    • /
    • 2000
  • For effective part modifications which is necessary in the design process frequently, variational geometric modeling with constraint management being used in a wide. Most variational geometric modeling methods, however, manage just the constraints about sketch elements used for generation of primitives. Thus, not only constraint propagation but also re-build of various modeling operations stored in the modeling history is necessary iota part geometry modifications. Especially, re-build of high-cost Boolean operations is apt to deteriorate overall modeling efficiency abruptly. Therefore, in this paper we proposed an algorithm that can handle all geometric entities of the part directly. For this purpose, we introduced eight type geometric constraints to the various geometric calculations about all geometric entities in sweepings and Boolean operations as well as the existing constraints of the sketch elements. The algorithm has a merit of rapid part geometric modifications through only constraint propagation without rebuild of modeling operations which are necessary in the existing variational geometric modeling method.

  • PDF

Interface Design of Virtual Modeling Dataand Nonlinear Analysis Program (Virtual Modeling Data와 비선형 해석 프로그램의 Interface 설계)

  • Park, Jae-Guen;Lee, Heon-Min;Jo, Sung-Hoon;Lee, Kwang-Myong;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.100-103
    • /
    • 2008
  • Recently Development of construction system that subjective operators share and control information efficiently based on the three-dimensional space and design information throughout life cycle of construction project is progressing dynamically. In case of civil structures which are infrastructure, Demand for structure of complex system which has multi-functions such as super and smart bridges and express rails is increasing and system development which computerizes and integrates process of structure design is in need. For that, research about link way between three dimensional modeling data and structure analysis programs should be preceded. In this research, therefore, research about interface design between three dimensional virtual modeling data to automate efficient civil-structure-design and nonlinear finite element analysis program which is made up of reinforced concrete material model that express material's character clearly.

  • PDF

Exchange of CAD Part Models Based on the Macro-Parametric Approach

  • Choi, Guk-Heon;Mun, Du-Hwan;Han, Soon-Hung
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • It is not possible to exchange parametric information of CAD models based on the current version of STEP. The design intent can be lost during the STEP transfer of CAD models. The Parametrics Group of ISO/TC184/SC4 has proposed the SMCH schema, which includes constructs for exchange of parametric information. This paper proposes a macro-parametric approach that is intended to provide capabilities to transfer parametric information including design intents. In this approach, CAD models are exchanged in the form of macro files. The macro file contains the history of user commands, which are used in the modeling phase. To exchange CAD models using the macro-parametric approach, the modeling commands of several commercial CAD systems are analyzed. Those commands are classified and a set of standard modeling commands has been defined. Mapping relations between the standard modeling commands and the native modeling commands of commercial CAD systems are defined. The scope of the current version is limited to parts modeling, not assemblies.

Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicle Cab (통계적 에너지 해석 모델을 이용한 건설 장비 차실 설계에 관한 연구)

  • 채장범
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.609-615
    • /
    • 1998
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis(DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF

Parametric Design System Basedon Design Unit and Configuration Design Method (구성 설계방법과 설계유니트를 이용한 파라메트릭 설계 시스템)

  • 명세현;한순흥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.702-706
    • /
    • 1995
  • Integration of CAM and CAM information is important in the CIM era. For a CIM system, the feature representation can be a solution to the integration of product model data. These are geometry feature, functional feature, and manufacturing feature in the feature context. This paper proposes a framework to integrate the configuration design method, parametric modeling and the feature modeling method. The concept of design unit which is one level higher than functional feature and parametric modeling concept with functional features have been proposed.

  • PDF

A Study on the Application of BIM-enabled Interior Panel Design by the control of Parametric Objects and their Properties (객체 및 속성정보 제어를 이용한 BIM기반 파라메트릭 인테리어 패널 디자인 접근방법)

  • Kim, Hayan;Lee, Jin-Kook
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.6
    • /
    • pp.70-78
    • /
    • 2016
  • This paper aims to describe a case study of parametric interior design based on BIM (Building Information Modeling). As the practical use of BIM-based design grows, its influence expands into the field of interior architecture design. BIM makes possible to check various design plan, reach decision making in an effective way, and change design plan in an efficient method. Therefore, BIM is also promising field in interior architecture design. However, compared to other fields in architecture, engineering, and construction (AEC) industry, there have been less research and projects on BIM in the field of interior architecture. For increasing the feasibility of adapting BIM in interior architecture design, this paper describes a case study-projecting images for designing interior panels using parametric modeling. This process needs elaborate, delicate, and precise steps for harmonious output. For continuous use of building, users look forward to the design which variable and changeable according to user's preference and environment. Therefore, demand for parametric design in the interior design part such as panel pattern design for various decoration is growing. Treated process in this paper deals with an advanced phase which much effective in decreasing time consumption and useless part of process. Finally, this paper suggests the possibility of using BIM in the interior design process and field where BIM can be applied.

Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicles (통계적 에너지 해석 모델을 이용한 건설 장비 설계에 관한 연구)

  • ;Manning, Jerome E.;Tracey, Brian H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.385-390
    • /
    • 1997
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis (DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF

Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products (사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF

Procedural Interface between Freehand Sketch-based Modeling System and Commercial MCAD (프리핸드 스케치 기반 모델링 시스템과 상업용 MCAD의 절차적 인터페이스)

  • Cheon, Sang-Uk;Mun, Du-Hwan;Kim, Byung-Chul;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.255-264
    • /
    • 2008
  • Research that reconstructs a 3D model from a freehand 2D sketch has gained attention since 1990s, when data integration in the CAD/CAPP/CAM/CNC chain was an important issue. However, 2D sketches in the conceptual design phase have not been integrated with the downstream CAD/CAPP/CAM/CNC chain. In this paper, we present a method to interface a freehand sketch modeling to commercial CAD systems by mapping a sketch modeling history to the macro parametric history. We use an extended ISO10303-112 standard to represent the modeling history in a gestural modeling system and translate sketch files to neutral macro files. Macro parametric translators are used to translate netural macro files to commercial CAD files.

Configuration Design of a Train Bogie using Functional Decomposition and TRIZ Theory (기능분해와 TRIZ 이론을 이용한 철도 대차의 구성설계)

  • Lee, Jangyong;Han, Soonhung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • The configuration design of a mechanical product can be efficiently performed when it is based on the functional modeling. There are methodologies, which decompose function from the abstract level to the concrete level and match the functions to physical parts. But it is difficult to carry out an innovative design when the function is matched only to a pre-detined part. This paper describes the configuration design process of a mechanical product with a design expert system, which uses function taxonomy and TRIZ theory. The expert system can propose a functional modeling of a new part. which is not in the existing parts list. The abstraction levels of design knowledge are introduced, which describe the operation of mechanical product in the levels of abstraction. This is the theoretical background of using knowledge of function and TRIZ for configuration design. The expert system is adequate to control this design knowledge. which expresses knowledge of functional modeling, mapping rules between functions and parts, selection of parts, and TRIZ theory. The hierarchy of functions and machine parts are properly expressed by classes and objects in the expert system. A design expert system has been implemented for the configuration design of a train bogie, and a new brake system of the bogie is introduced with the aid of TRIZ's 30 function groups.