• Title/Summary/Keyword: Model-drug distribution

Search Result 79, Processing Time 0.032 seconds

Mathematical description of drug distribution in the isolated organ

  • Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 1980
  • The model of an isolated organ system has been constructed to simulated the behavior of drug in the circulatory system of an acting organ or site. The model is developed on the following assumptions : The drug in the microcirculatory system cannot permeate the capilary walls. The capilary bed is modeled as a simple ideal plug flow system with and without radial concentration gradient. The mathematical model is developed from basic considerations of drug distribution with hemodynamical and pharmacokinetical meanings. It is considered that a nonmetabolic drug substance is injected into the arterial inflow site of an isolated organ at a constant rate. The concentration of the drug in the outflow site is mathematically expressed as a function of time.

  • PDF

Mathematical Description of the Volume of Distribution in the Isolated Organ

  • Kim, Chong-Kook;Kim, Yang-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.10 no.1
    • /
    • pp.1-3
    • /
    • 1980
  • The model of an isolated organ system has been developed to simulate the kinetic behavior of drug levels in an acting organ or site. The model is developed from basic considerations of drug distribution with hemodynamical and pharmacokinetical meanings. Model: It is considered a situation in which non-metabolic drug substance is injected into the arterial inflow of an isolated organ at constant rate. The volume of distribution and the concentration of drug in the venous outflow can be mathematically expressed as a function of time.

  • PDF

A Physiologically Based Pharmacokinetic Model for Absorption and Distribution of Imatinib in Human Body

  • Chowdhury, Mohammad Mahfuz;Kim, Do-Hyun;Ahn, Jeong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3967-3972
    • /
    • 2011
  • A whole body physiologically based pharmacokinetic (PBPK) model was applied to investigate absorption, distribution, and physiologic variations on pharmacokinetics of imatinib in human body. Previously published pharmacokinetic data of the drug after intravenous (i.v.) infusion and oral administration were simulated by the PBPK model. Oral dose absorption kinetics were analyzed by adopting a compartmental absorption and transit model in gut section. Tissue/plasma partition coefficients of drug after i.v. infusion were also used for oral administration. Sensitivity analysis of the PBPK model was carried out by taking parameters that were commonly subject to variation in human. Drug concentration in adipose tissue was found to be higher than those in other tissues, suggesting that adipose tissue plays a role as a storage tissue for the drug. Variations of metabolism in liver, body weight, and blood/plasma partition coefficient were found to be important factors affecting the plasma concentration profile of drug in human body.

Physiological Pharmacokinetic Model of Ceftriaxone Disposition in the Rat and the Effect of Caffeine on the Model

  • Kwon, Kwang-Il;Bourne, David-W.A.
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.227-232
    • /
    • 1990
  • A Physiologically based pharmacokinetic model was used to describe the distribition and elimination of cefriazone in the rat. To validate the practical application of the model, the effect of cffeine on the model was also examined. The model consisted of eleven compartments representing the major sites for ceftriaxone distribution including carcass which served as a residual compartment. Elimination was represented by renal and hepatic (metabolic biliary )excretion with GI secretion and re-absorption. The drug concentrations in most of the tissues were simulated using flow limited equations while brain levels were simulated using membrane limited passive diffusion distribution. The experimental data were obtained by averaging the concentration of drug in the plasma and tissues of five rats after i. v. injection of cefriazone 100 mg/kg without and with caffeine 20 mg/kg. The data for the amount of ceftriazone excreted in urine and gut contents were used to apportion total body clearance. HPLC with UV detection was used for the assay with 0.1-0.2 $\mu$g/ml sensitivity. The great majority of drug concentrations with and without caffeine show reasonably good agreements to the simulation results within 20%. The effect of caffeine on renal and hepatic clearances was apparent with 18.8% and 18.6% increase in the model values, respectively.

  • PDF

Drug Targeting to Lungs by Way of Microspheres

  • Harsha, N. Sree;Rani, R.H. Shobha
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.598-604
    • /
    • 2006
  • In many conventional drug delivery systems in vogue, failure to deliver efficient drug delivery at the target site/organs; is evident as a result, less efficacious pharmacological response is elicited. Microspheres can be derived a remedial measure which can improve site-specific drug delivery to a considerable extent. As an application, Lung-targeting Ofloxacin-loaded gelatin microspheres (GLOME) were prepared by water in oil emulsion method. The Central Composite Design (CCD) was used to optimize the process of preparation, the appearance and size distribution were examined by scanning electron microscopy, the aspects such as in vitro release characteristics, stability, drug loading, loading efficiency, pharmacokinetics and tissue distribution in albino mice were studied. The experimental results showed that the microspheres in the range of $0.32-22\;{\mu}m$. The drug loading and loading efficiency were 61.05 and 91.55% respectively. The in vitro release profile of the microspheres matched the korsmeyer’s peppas release pattern, and release at 1h was 42%, while for the original drug, ofloxacin under the same conditions 90.02% released in the first half an hour. After i.v. administration (15 min), the drug concentration of microspheres group in lung in albino mice was $1048\;{\mu}g/g$, while that of controlled group was $6.77\;{\mu}g/g$. GLOME found to release the drug to a maximum extent in the target tissue, lungs.

Simultaneous Evaluation of Cellular Vitality and Drug Penetration in Multicellular Layers of Human Cancer Cells

  • Al-Abd Ahmed Mohammed;Lee Joo-Ho;Kuh Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.309-314
    • /
    • 2006
  • The multicellular layers(MCL) of human cancer cells is a three dimensional(3D) in vitro model for human solid tumors which has been used primarily for the assessment of avascular penetration of anti-cancer drugs. For anti-cancer drugs with penetration problem, MCL represents a good experimental model that can provide clinically relevant data. Calcein-AM is a fluorescent dye that demonstrates the cellular vitality in a graded manner in cancer cell culture system. In the present study, we evaluated the use of calcein-AM for determination of anti-proliferative activity of anti-cancer agents in MCL model of DLD-1 human colorectal cancer cells. Optical sectioning of confocal imaging was compromised with photonic attenuation and penetration barrier in the deep layers of MCL. By contrast, fluorescent measurement on the cryo-sections provided a feasible alternative. Cold pre-incubation did not enhance the calcein-AM distribution to a significant degree in MCL of DLD-1 cells. However, the simultaneous determination of drug penetration and cellular vitality appeared to be possible in drug treated MCL. In conclusion, these data suggest that calcein-AM can be used for the simultaneous determination of drug-induced anti-proliferative effect and drug penetration in MCL model.

An experience on the model-based evaluation of pharmacokinetic drug-drug interaction for a long half-life drug

  • Hong, Yunjung;Jeon, Sangil;Choi, Suein;Han, Sungpil;Park, Maria;Han, Seunghoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.545-553
    • /
    • 2021
  • Fixed-dose combinations development requires pharmacokinetic drugdrug interaction (DDI) studies between active ingredients. For some drugs, pharmacokinetic properties such as long half-life or delayed distribution, make it difficult to conduct such clinical trials and to estimate the exact magnitude of DDI. In this study, the conventional (non-compartmental analysis and bioequivalence [BE]) and model-based analyses were compared for their performance to evaluate DDI using amlodipine as an example. Raw data without DDI or simulated data using pharmacokinetic models were compared to the data obtained after concomitant administration. Regardless of the methodology, all the results fell within the classical BE limit. It was shown that the model-based approach may be valid as the conventional approach and reduce the possibility of DDI overestimation. Several advantages (i.e., quantitative changes in parameters and precision of confidence interval) of the model-based approach were demonstrated, and possible application methods were proposed. Therefore, it is expected that the model-based analysis is appropriately utilized according to the situation and purpose.

Population Pharmacokinetics of Midazolam in Healthy Koreans: Effect of Cytochrome P450 3A-mediated Drug-drug Interaction (건강한 한국인에서 미다졸람 집단약동학 분석: CYP3A 매개 약물상호작용 평가)

  • Shin, Kwang-Hee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.4
    • /
    • pp.312-317
    • /
    • 2016
  • Objective: Midazolam is mainly metabolized by cytochrome P450 (CYP) 3A. Inhibition or induction of CYP3A can affect the pharmacological activity of midazolam. The aims of this study were to develop a population pharmacokinetic (PK) model and evaluate the effect of CYP3A-mediated interactions among ketoconazole, rifampicin, and midazolam. Methods: Three-treatment, three-period, crossover study was conducted in 24 healthy male subjects. Each subject received 1 mg midazolam (control), 1 mg midazolam after pretreatment with 400 mg ketoconazole once daily for 4 days (CYP3A inhibition phase), and 2.5 mg midazolam after pretreatment with 600 mg rifampicin once daily for 10 days (CYP3A induction phase). The population PK analysis was performed using a nonlinear mixed effect model ($NONMEM^{(R)}$ 7.2) based on plasma midazolam concentrations. The PK model was developed, and the first-order conditional estimation with interaction was applied for the model run. A three-compartment model with first-order elimination described the PK. The influence of ketoconazole and rifampicin, CYP3A5 genotype, and demographic characteristics on PK parameters was examined. Goodness-of-fit (GOF) diagnostics and visual predictive checks, as well as bootstrap were used to evaluate the adequacy of the model fit and predictions. Results: Twenty-four subjects contributed to 900 midazolam concentrations. The final parameter estimates (% relative standard error, RSE) were as follows; clearance (CL), 31.8 L/h (6.0%); inter-compartmental clearance (Q) 2, 36.4 L/h (9.7%); Q3, 7.37 L/h (12.0%), volume of distribution (V) 1, 70.7 L (3.6%), V2, 32.9 L (8.8%); and V3, 44.4 L (6.7%). The midazolam CL decreased and increased to 32.5 and 199.9% in the inhibition and induction phases, respectively, compared to that in control phase. Conclusion: A PK model for midazolam co-treatment with ketoconazole and rifampicin was developed using data of healthy volunteers, and the subject's CYP3A status influenced the midazolam PK parameters. Therefore, a population PK model with enzyme-mediated drug interactions may be useful for quantitatively predicting PK alterations.

Development of Classification Model for hERG Ion Channel Inhibitors Using SVM Method (SVM 방법을 이용한 hERG 이온 채널 저해제 예측모델 개발)

  • Gang, Sin-Moon;Kim, Han-Jo;Oh, Won-Seok;Kim, Sun-Young;No, Kyoung-Tai;Nam, Ky-Youb
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.653-662
    • /
    • 2009
  • Developing effective tools for predicting absorption, distribution, metabolism, excretion properties and toxicity (ADME/T) of new chemical entities in the early stage of drug design is one of the most important tasks in drug discovery and development today. As one of these attempts, support vector machines (SVM) has recently been exploited for the prediction of ADME/T related properties. However, two problems in SVM modeling, i.e. feature selection and parameters setting, are still far from solved. The two problems have been shown to be crucial to the efficiency and accuracy of SVM classification. In particular, the feature selection and optimal SVM parameters setting influence each other, which indicates that they should be dealt with simultaneously. In this account, we present an integrated practical solution, in which genetic-based algorithm (GA) is used for feature selection and grid search (GS) method for parameters optimization. hERG ion-channel inhibitor classification models of ADME/T related properties has been built for assessing and testing the proposed GA-GS-SVM. We generated 6 different models that are 3 different single models and 3 different ensemble models using training set - 1891 compounds and validated with external test set - 175 compounds. We compared single model with ensemble model to solve data imbalance problems. It was able to improve accuracy of prediction to use ensemble model.

Particle Size Distribution, Drug Loading Capacity and Release Profiles of Solid Lipid Nanoparticles of Phenylpropionic Acids (페닐프로피온산계 해열진통제 고형지질나노입자의 입도분포와 약물봉입 및 용출특성)

  • Kim, Yoon-Sun;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.249-255
    • /
    • 1998
  • Solid Lipid Nanoparticle(SLN), one of the colloidal carrier systems, has many advantages such as good biocompatibility, low toxicity and stability. In this paper, the effects of drug lipophilicity and surfactant on the drug loading capacity, particle size and drug release profile were examined. SLNs were prepared by homogenization of melted lipid dispersed in an aqueous surfactant solution. Ketoprofen, ibuprofen and pranoprofen were used as model drugs and tweens and poloxamers were tested for the effect of surfactant. Mean particle size of prepared SLNs was ranged from 100 to 150nm. The drug loading capacity was improved with the most lipophilic drug and low concentration of surfactant. Particle size and polydispersity of SLNs were changed according to the used lipid and surfactant. The rates of drug release were controlled by the loading drug and surfactant concentration. SLN system with effective drug loading efficiency and proper particle size for the intravenous or oral formulation can be prepared by selecting optimum drug and surfactant.

  • PDF