• Title/Summary/Keyword: Model-based fault detection

Search Result 263, Processing Time 0.026 seconds

Model - Based Sensor Fault Detection and Isolation for a Fuel Cell in an Automotive Application (모델 기반 연료전지 스택 온도 센서 고장 감지 및 판별)

  • Han, Jaeyoung;Kim, Younghyeon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.735-742
    • /
    • 2017
  • In this study, an effective model-based sensor fault detection methodology that can detect and isolate PEM temperature sensors fault is introduced. In fuel cell vehicle operation process, the stack temperature affects durability of a fuel cell. Thus, it is important for fault algorithm to detect the fault signals. The major objective of sensor fault detection is to guarantee the healthy operations of the fuel cell system and to prevent the stack from high temperature and low temperature. For the residual implementation, parity equation based on the state space is used to detect the sensors fault as stack temperature and coolant inlet temperature, and residual is compared with the healthy temperature signals. Then the residuals are evaluated by various fault scenarios that detect the presence of the sensor fault. In the result, the designed in this study fault algorithm can detect the fault signal.

Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network (합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지)

  • Baek, Seung-dae;Woo, Joo-hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

Fault Diagnosis for Parameter Change Fault

  • Suzuki, Keita;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2183-2187
    • /
    • 2005
  • In this paper we propose a new fault detection and isolation (FDI) method for those faults of parameter change type. First, we design a residual generator based on the ${\delta}$-operator model of the plant by using the stable pseudo inverse system. Second, the parameter change is estimated by using the property of the block Hankel operator. Third, reliability with respect to stability is quantified. Fourth, the limitations for the meaningful diagnosis in our method are given. The numerical examples demonstrate the effectiveness of the proposed method.

  • PDF

A Study on Fault Diagnosis of Boiler Tube Leakage based on Neural Network using Data Mining Technique in the Thermal Power Plant (데이터마이닝 기법을 이용한 신경망 기반의 화력발전소 보일러 튜브 누설 고장 진단에 관한 연구)

  • Kim, Kyu-Han;Lee, Heung-Seok;Jeong, Hee-Myung;Kim, Hyung-Su;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1445-1453
    • /
    • 2017
  • In this paper, we propose a fault detection model based on multi-layer neural network using data mining technique for faults due to boiler tube leakage in a thermal power plant. Major measurement data related to faults are analyzed using statistical methods. Based on the analysis results, the number of input data of the proposed fault detection model is simplified. Then, each input data is clustering with normal data and fault data by applying K-Means algorithm, which is one of the data mining techniques. fault data were trained by the neural network and tested fault detection for boiler tube leakage fault.

Winding Turn-to-Turn Faults Detection of Fault-Tolerant Permanent-Magnet Machines Based on a New Parametric Model

  • Liu, Guohai;Tang, Wei;Zhao, Wenxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This paper proposes a parametric model for inter-turn fault detection in a fault-tolerant permanent-magnet (FTPM) machine, which can predict the effect of the short-circuit fault to various physical quantity of the machine. For different faulty operations, a new effective stator inter-turn fault detection method is proposed. Finally, simulations of vector-controlled FTPM machine drives are given to verify the feasibility of the proposed method, showing that even single-coil short-circuit fault could be exactly detected.

Robust fault detection and diagnosis in boiler systems

  • Kim, Yu-Soong;Kwon, Oh-Kyu;Hong, Il-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.537-542
    • /
    • 1994
  • This paper gives a general survey of model-based fault detection and dignosis methods. Specific applications of these ideas to boiler systems will also be discussed. A novel aspect of the fault detection technique described here is that it explicitly accounts for the effects of using simplified models and errors from linearizing a nonlinear system at an operation point. Inclusion of these effects is shown to lead to novel fault detection procedures which outperform existing methods when applied to typical fault scenarios in boiler systems.

  • PDF

Fault Detection in Diecasting Process Based on Deep-Learning (다단계 딥러닝 기반 다이캐스팅 공정 불량 검출)

  • Jeongsu Lee;Youngsim, Choi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.369-376
    • /
    • 2022
  • The die-casting process is an important process for various industries, but there are limitations in the profitability and productivity of related companies due to the high defect rate. In order to overcome this, this study has developed die-casting fault detection modules based on industrial AI technologies. The developed module is constructed from three-stage models depending on the characteristics of the dataset. The first-stage model conducts fault detection based on supervised learning from the dataset without labels. The second-stage model realizes one-class classification based on semi-supervised learning, where the dataset only has production success labels. The third-stage model corresponds to fault detection based on supervised learning, where the dataset includes a small amount of production failure cases. The developed fault detection module exhibited outstanding performance with roughly 96% accuracy for actual process data.

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

Induction Machine Fault Detection Using Generalized Feed Forward Neural Network

  • Ghate, V.N.;Dudul, S.V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • Industrial motors are subject to incipient faults which, if undetected, can lead to motor failure. The necessity of incipient fault detection can be justified by safety and economical reasons. The technology of artificial neural networks has been successfully used to solve the motor incipient fault detection problem. This paper develops inexpensive, reliable, and noninvasive NN based incipient fault detection scheme for small and medium sized induction motors. Detailed design procedure for achieving the optimal NN model and Principal Component Analysis for dimensionality reduction is proposed. Overall thirteen statistical parameters are used as feature space to achieve the desired classification. GFFD NN model is designed and verified for optimal performance in fault identification on experimental data set of custom designed 2 HP, three phase 50 Hz induction motor.

Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems (태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.