• Title/Summary/Keyword: Model-based fault detection

Search Result 263, Processing Time 0.046 seconds

Fault Detection and Diagnosis for an Air-Handling Unit Using Artificial Neural Networks (신경망 이용 공조기 고장검출 및 진단)

  • 이원용;경남호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1288-1296
    • /
    • 2001
  • A scheme for on-line fault detection and diagnosis of an air-handling unit is presented. The fault detection scheme uses residuals which are generated by comparing each measurement with analytical redundancies computed from the reference models. In this paper, artificial neural networks (ANNs) are used to estimate analytical redundancy and to classify faults. The Lebenburg-Marquardt algorithm is used to train feed forward ANNs that provide estimates of continuous states and diagnosis results. The simulation result demonstrated that the ANNs can effectively detect and diagnose faults in the highly non-linear and complex HVAC systems.

  • PDF

Fuzzy Algorithm for FDD Technique Development of System Multi-Air Conditioner (퍼지 알고리즘을 이용한 시스템 멀티 에어컨의 고장진단 알고리즘 개발)

  • Choi, C. S.;Tae, S. J.;Kim, H. M.;Cho, K. N.;Moon, J. M.;Kim, J. Y.;Kwon, H. J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1220-1228
    • /
    • 2005
  • Fault detection and diagnostic (FDD) systems have the potential to reduce equipment downtime, service costs, and utility costs. In this study, model based algorithm and fuzzy algorithm were used to detect and diagnose various fault at System multi-air conditioner. various fault include the Refrigerant Low charging, Fouling of Indoor Heat Exchanger, Fouling of Outdoor Heat Exchanger A experimental verification was conducted in the 6HP System multi-air conditioner on an 8-floor building. Test results showed diagnosis result about 78 $\~$ 90$\%$ for given faults. This Study lays the foundation fur future work on develope the real-time fault detection and diagnosis system for the System multi-air conditioner.

Frameworks for NHPP Software Reliability Growth Models

  • Park, J.Y.;Park, J.H.;Fujiwara, T.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.2
    • /
    • pp.155-166
    • /
    • 2006
  • Many software reliability growth models (SRGMs) based on nonhomogeneous Poisson process (NHPP) have been developed and applied in practice. NHPP SRGMs are characterized by their mean value functions. Mean value functions are usually derived from differential equations representing the fault detection/removal process during testing. In this paper such differential equations are regarded as frameworks for generating mean value functions. Currently available frameworks are theoretically discussed with respect to capability of representing the fault detection/removal process. Then two general frameworks are proposed.

  • PDF

Fault tolerant control for remotely piloted vehicle (원격조종 비행체의 이상허용 제어)

  • Kim, Dae-Woo;Son, Won-Ki;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.683-690
    • /
    • 1999
  • This paper deals with a fault-tolerant control method for robust control of RPV(Remotely Piloted Vehicle). To design the flight control system, the 6-DOF simulation program has been developed based on the dynamic model of RPV. A robust fault detection and diagnosis method proposed by Kwon et al. [8]-[10] is adopted to detect the actuator fault of RPV and to make the controller reconfiguration. The Hoo control method is applied to the flight control system. An integrated simulation for performance evaluation of the fault-tolerat\nt control system designed is performed via 6 DOF simulation and shows that the control system works even under the actuator fault.

  • PDF

A Fault Prognostic System for the Logistics Rotational Equipment (물류 회전설비 고장예지 시스템)

  • Soo Hyung Kim;Berdibayev Yergali;Hyeongki Jo;Kyu Ik Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Model-based fault diagnosis methodology using neural network and its application

  • Lee, In-Soo;Kim, Kwang-Tae;Cho, Won-Chul;Kim, Jung-Teak;Kim, Kyung-Youn;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.127.1-127
    • /
    • 2001
  • In this paper we propose an input/output model based fault diagnosis method to detect and isolate single faults in the robot arm control system. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation, When a change in the system occurs, the errors between the system output and the estimated output cross a predetermined threshold, and once a fault in the system is detected, and in this zone the estimated parameters are transferred to the fault classifier by ART2(adaptive resonance theory 2) neural network for fault isolation. Since ART2 neural network is an unsupervised neural network fault classifier does not require the knowledge of all possible faults to isolate the faults occurred in the system. Simulations are carried out to evaluate the performance of the proposed ...

  • PDF

An Quality Management Effort Estimation Model Based on Defect Filtering Concept (결점 필터링 개념 기반 품질관리 노력 추정 모델)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.101-109
    • /
    • 2012
  • To develop high quality software, quality control plan is required about fault correction that is latent within software. We should describe fault correction profile properly for this. The tank and pipe model performs complex processes to calculate fault that is remove and escapes. Also, we have to know in which phase the faults were inserted, removed and escaped and know the fault detection rate at any phases. To simplify such complex process, this paper presented model to fault filtering concept. Presented model has advantage that can describe fault more shortly because need not to consider whether was involved in fault that escaped fault is inserted at any step at free step. Also, presented effort estimating model that do fetters in function of fault removal quality and productivity measure and is required in fault detection.

Improved PCA method for sensor fault detection and isolation in a nuclear power plant

  • Li, Wei;Peng, Minjun;Wang, Qingzhong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.146-154
    • /
    • 2019
  • An improved principal component analysis (PCA) method is applied for sensor fault detection and isolation (FDI) in a nuclear power plant (NPP) in this paper. Data pre-processing and false alarm reducing methods are combined with general PCA method to improve the model performance in practice. In data pre-processing, singular points and random fluctuations in the original data are eliminated with various techniques respectively. In fault detecting, a statistics-based method is proposed to reduce the false alarms of $T^2$ and Q statistics. Finally, the effects of the proposed data pre-processing and false alarm reducing techniques are evaluated with sensor measurements from a real NPP. They are proved to be greatly beneficial to the improvement on the reliability and stability of PCA model. Meanwhile various sensor faults are imposed to normal measurements to test the FDI ability of the PCA model. Simulation results show that the proposed PCA model presents favorable performance on the FDI of sensors no matter with major or small failures.

A Model-Based Fault Detection and Diagnosis Methodology for Cooling Tower

  • Ahn, Byung-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.63-71
    • /
    • 2001
  • This paper presents a model-based method for detecting and diagnosing some faults in the cooling tower of healing, ventilating, and air-conditioning systems. A simple model for the cooling tower is employed. Faults in cooling tower operation are detected through the deviations in the values of system characteristic parameters such as the heat transfer coefficient-area product, the tower approach, the tower effectiveness, and fan power. Three distinct faults are considered: cooling tower inlet water temperature sensor fault, cooling tower pump fault, and cooling tower fan fault. As a result, most values of the system characteristics parameter variations due to a fault are much higher or lower than the values without faults. This allows the faults in a cooling tower to be detected easily using above methods. The diagnostic rules for the faults were also developed through investigating the changes in the different parameter due to each faults.

  • PDF