• Title/Summary/Keyword: Model-based Optimization

Search Result 2,656, Processing Time 0.032 seconds

A B-spline based Branch & Bound Algorithm for Global Optimization (전역 최적화를 위한 B-스플라인 기반의 Branch & Bound알고리즘)

  • Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2010
  • This paper introduces a B-spline based branch & bound algorithm for global optimization. The branch & bound is a well-known algorithm paradigm for global optimization, of which key components are the subdivision scheme and the bound calculation scheme. For this, we consider the B-spline hypervolume to approximate an objective function defined in a design space. This model enables us to subdivide the design space, and to compute the upper & lower bound of each subspace where the bound calculation is based on the LHS sampling points. We also describe a search tree to represent the searching process for optimal solution, and explain iteration steps and some conditions necessary to carry out the algorithm. Finally, the performance of the proposed algorithm is examined on some test problems which would cover most difficulties faced in global optimization area. It shows that the proposed algorithm is complete algorithm not using heuristics, provides an approximate global solution within prescribed tolerances, and has the good possibility for large scale NP-hard optimization.

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

Approximate Optimization Based on Meta-model for Weight Minimization Design of Ocean Automatic Salt Collector (해양자동채염기의 최소중량설계를 위한 메타모델 기반 근사최적화)

  • Song, Chang Yong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.109-117
    • /
    • 2021
  • In this paper, the meta-model based approximate optimization was carried out for the structure design of an ocean automatic salt collector in order to minimize the structure weight. The structural analysis was performed by using the finite element method to evaluate the strength performance of the ocean automatic salt collector in its initial design. In the structural analysis, it was evaluated the strength performance of the design load conditions. The optimum design problem was formulated so that design variables of main structure thickness would be determined by minimizing the structure weight subject to strength performance constraints. The meta-models used in the approximate optimization were the response surface method, Kriging model, and Chebyshev orthogonal polynomials. Regarding to the numerical characteristics, the solution results from approximate optimization techniques were compared to the results of non-approximate optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the ocean automatic salt collector.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

Design Optimization of Bracket for Wear Sensor of Automobile Brake Pads Based on Dynamic Kriging Surrogate Model (자동차 브레이크 패드 마모량 측정센서 브라켓의 다이나믹크리깅 대리모델 기반 설계최적화)

  • Jun-Yeong Jeong;Jung Joo Yoo;Kyung Seok Byun;Hyunkyoo Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.95-101
    • /
    • 2024
  • This paper introduces an optimized design for a sensor bracket used to measure the wear amount of an automobile brake pad, based on a dynamic kriging surrogate model. During testing, the temperature of the brake pad can increase beyond 600℃, which often causes sensor malfunction. Therefore, it is essential to optimize the shape of the sensor bracket to minimize heat transfer. To reduce the computational cost of the optimization, the heat-transfer simulation is replaced by a dynamic kriging surrogate model. Dynamic kriging utilizes the best combination of correlation and basis functions and constructs an accurate surrogate model. Following optimization, the temperature of the sensor position decreases by 7.57%. The results from the surrogate model under optimum conditions are verified by a heat-transfer simulation, and the design optimization using a surrogate model is found to be effective.

Optimization-Based Buyer-Supplier Price Negotiation: Supporting Buyer's Scenarios with Suppler Selection

  • Lee, Pyoungsoo;Jeon, Dong-Han;Seo, Yong-Won
    • Journal of Distribution Science
    • /
    • v.15 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • Purpose - The paper aims to propose an optimization model for supporting the buyer-seller negotiations. We consider the price, quality, and delivery as evaluation criteria, also recognized as objectives for negotiation. Research design, data, and methodology - The methodology used in this paper involves the input-oriented DEA with the inverse optimization. Under the existence of several potential suppliers, the price would be considered to be the decision variable to conclude the negotiation so as to meet the desired level of the quality and delivery. The data set for six suppliers with three criteria is examined by the proposed approach. Results - We present the decision aid model by displaying the price spectrum as the changes of desired output levels. It overcomes the shortcomings from previous researches mainly based on the discrete types of scenario generations. This approach shows that the obtained results help the buyer understand the trade-offs between price and performance when he/she considers the negotiation. Conclusions - The paper contributes to the numerical models for buyer-supplier negotiation in that the model for the supplier evaluation and selection is closely linked with the model for negotiation. In addition, it eliminates the unrealistic negotiation strategy, and provides the negotiation strategies that the buyer would not shift the burden on suppliers by maintaining the current efficiency.

Optimal Design of Single-sided Linear Induction Motor Using Genetic Algorithm (유전알고리즘을 이용한 편측식 선형유도전동기의 최적설계)

  • Ryu, Keun-Bae;Choi, Young-Jun;Kim, Chang-Eob;Kim, Sung-Woo;Im, Dal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.923-928
    • /
    • 1993
  • Genetic algorithms are powerful optimization methods based on the mechanism of natural genetics and natural selection. Genetic algorithms reduce chance of searching local optima unlike most conventional search algorithms and especially show good performances in complex nonlinear optimization problems because they do not require any information except objective function value. This paper presents a new model based on sexual reproduction in nature. In the proposed Sexual Reproduction model(SR model), individuals consist of the diploid of chromosomes, which are artificially coded as binary string in computer program. The meiosis is modeled to produce the sexual cell(gamete). In the artificial meiosis, crossover between homologous chromosomes plays an essential role for exchanging genetic informations. We apply proposed SR model to optimization of the design parameters of Single-sided Linear Induction Motor(SLIM). Sequential Unconstrained Minimization Technique(SUMT) is used to transform the nonlinear optimization problem with many constraints of SLIM to a simple unconstrained problem, We perform optimal design of SLIM available to FA conveyer systems and discuss its results.

  • PDF

AN ADAPTIVE APPROACH OF CONIC TRUST-REGION METHOD FOR UNCONSTRAINED OPTIMIZATION PROBLEMS

  • FU JINHUA;SUN WENYU;SAMPAIO RAIMUNDO J. B. DE
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.165-177
    • /
    • 2005
  • In this paper, an adaptive trust region method based on the conic model for unconstrained optimization problems is proposed and analyzed. We establish the global and super linear convergence results of the method. Numerical tests are reported that confirm the efficiency of the new method.

Optimization of a Composite Laminated Structure by Network-Based Genetic Algorithm

  • Park, Jung-Sun;Song, Seok-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1033-1038
    • /
    • 2002
  • Genetic alsorithm (GA) , compared to the gradient-based optimization, has advantages of convergence to a global optimized solution. The genetic algorithm requires so many number of analyses that may cause high computational cost for genetic search. This paper proposes a personal computer network programming based on TCP/IP protocol and client-server model using socket, to improve processing speed of the genetic algorithm for optimization of composite laminated structures. By distributed processing for the generated population, improvement in processing speed has been obtained. Consequently, usage of network-based genetic algorithm with the faster network communication speed will be a very valuable tool for the discrete optimization of large scale and complex structures requiring high computational cost.