• Title/Summary/Keyword: Model validation

Search Result 3,278, Processing Time 0.028 seconds

Validation and Calibration of TUNVEN Model (TUNVEN 모형의 검증 및 보정)

  • Cheong, Jang-Pyo;Yoon, Sam-Seok;Yi, Seung-Muk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.785-796
    • /
    • 2000
  • In this study, the possibility of application of TUNVEN model was investigated through the validation and calibration processes. In order to validate and calibrate the TUNVEN model developed in USA to obtain prediction of the quasi-steady state longitudinal air velocities and the pollutants concentrations by solving the coupled one-dimensional steady state tunnel aerodynamic and advection equations. The major input parameters such as the concentration data for CO and $NO_x$, meteorological data and traffic volume in Hawngryung tunnel were measured. Prior to preparing the input parameters, the sensitivity analysis was conducted to identify the input parameters which need to be most accurately estimated in TUNVEN program. In order to establish the relationships between the model values and the measured values, the linear regression analysis was applied. In linear regression analysis, the model values were taken as independent parameter(X) and the measured values were taken as dependent parameter(Y) for four cases of data sef. From the results of linear regression analysis, the correlation coefficient(r) for four cases were calculated more than 0.91 and the values of slope and interception were analyzed as 0.5~2.2 and 0.01~2.3 respectively. From the above results, we concluded that the suitability of TUNVEN model was identified in prediction the longitudinal pollutant concentrations in tunnel.

  • PDF

An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation (차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증)

  • 배상우;윤중락;이장무;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

Nonlinear viscous material model

  • Ivica Kozar;Ivana Ban;Ivan Zambon
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.419-428
    • /
    • 2023
  • We have developed a model for estimating the parameters of viscous materials from indirect tensile tests for asphalt. This is a simple Burger nonlinear rheological two-cell model or standard model. At the same time, we begin to develop a more versatile and complex multi-cell model. The simple model is validated using experimental load-displacement results from laboratory tests: The recorded displacements are used as input values and the measured force data are simulated with the model. The optimal model parameters are estimated using the Levenberg-Marquardt method and a very good agreement between the experimental results and the model calculations is shown. However, not all parts of the model are active in the loading phase of the experiment, so we extended the validation of the model to the simulation of the relaxation behaviour. In this stage, the other model parameters are activated and the simulation results are consistent with the literature. At this stage, we have estimated the parameters only for the two-cell uniaxial model, but further work will include results for the multi-cell model.

Development of an integrative cardiovascular system model including cell-system and arterial network (세포-시스템 차원의 혈류역학적 심혈관 시스템 모델의 개발)

  • Shim, Eun-Bo;Jun, Hyung-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.542-546
    • /
    • 2008
  • In this study, we developed a whole cardiovascular system model combined with a Laplace heart based on the numerical cardiac cell model and a detailed arterial network structure. The present model incorporates the Laplace heart model and pulmonary model using the lumped parameter model with the distributed arterial system model. The Laplace heart plays a role of the pump consisted of the atrium and ventricle. We applied a cellular contraction model modulated by calcium concentration and action potential in the single cell. The numerical arterial model is based upon a numerical solution of the one-dimensional momentum equations and continuity equation of flow and vessel wall motion in a geometrically accurate branching network of the arterial system including energy losses at bifurcations. For validation of the present method, the computed pressure waves are compared with the existing experimental observations. Using the cell-system-arterial network combined model, the pathophysiological events from cells to arterial network are delineated.

  • PDF

L-THIA Modification and SCE-UA Application for Spatial Analysis of Nonpoit Source Pollution at Gumho River Basin (환경부 토지피복 중분류 적용을 위한 L-THIA 모델 수정과 SCE-UA연계적용에 의한 금호강유역 비점오염 분포파악)

  • Kim, Jung-Jin;Kim, Tae Dong;Choi, Dong Hyuk;Lim, Kyoung Jae;Engel, Bernard;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.311-321
    • /
    • 2009
  • Long-Term Hydrologic Impact Assessment (L-THIA) was modified to improve runoff and pollutant load prediction for Korean watersheds with changes in land use classification and event mean concentration produced from observed data in Korea. The L-THIA model was linked with SCE-UA, which is one of the global optimization techniques, to automatically calibrate direct runoff. Modified L-THIA model was applied to Gumho River Basins to analyze spatial distribution of nonpoint source pollution. The results of model calibration during 1991~2000 and validation during 1981~1990 for direct runoff represented high model efficiency of 0.76 for calibration and 0.86 for validation. As a results of spatial analysis of nonpoint source pollution, the BOD was mainly loaded from urban area but SS, TN, and TP from agricultural area which is mainly located along the stream. Modified L-THIA model improve its accuracy with minimum imput data and application efforts. From this study, we can find out the L-THIA model is very useful tool to predict direct runoff and pollutant loads from the watershed and spatial analysis of nonpoint source pollution.

Design Optimization of Transonic Wing/Fuselage System Using Proper Orthogona1 Decomposition (Proper Orthogonal Decomposition을 이용한 천음속 날개/동체 모텔의 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Cho, Maeng-Hyo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • This paper presents a validation of the accuracy of a reduced order model(ROM) and the efficiency of the design optimization using a Proper Orthogonal Decomposition(POD) to transonic wing/fuselage system. Three dimensional Euler equations are solved to extrude snapshot data of the full order aerodynamic analysis, and then a set of POD basis vectors reproducing the behavior of flow around the wing/fuselage system is calculated from these snapshots. In this study, reduced order model constructed through this procedure is applied to several validation cases, and then it is confirmed that the ROM has the capability of the prediction of flow field in the space of interest. Additionally, after the design optimization of the wing/fuselage system with the ROM is performed, results of the ROM are compared with results of the design optimization using response surface model(RSM). From these, it can be confirmed that the design optimization with the ROM is more efficient than RSM.

Development and Validation of an Improved 5-DOF Aircraft Dynamic Model for Air Traffic Control Simulation (항공교통관제 시뮬레이션을 위한 개선된 5 자유도 항공기 운동 모델 개발 및 검증방안 연구)

  • Kang, Jisoo;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.387-393
    • /
    • 2016
  • To perform realistic air traffic control (ATC) simulation in various air traffic situations, an aircraft dynamic model that is accurate and efficient is required. In this research, an improved five degree of freedom (5-DOF) dynamic model with feedback control and guidance law is developed, which utilizes selected performance data and operational specifications from the base of aircraft data (BADA) and estimations using aircraft design techniques to improve the simulation fidelity. In addition, takeoff weight is estimated based on the aircraft type and flight plan to improve simulation accuracy. The dynamic model is validated by comparing the simulation results with recorded flight trajectories. An ATC simulation system using this 5-DOF model can be used for various ATC related research.

Model Evaluation based on a Relationship Analysis between the Emission and Concentration of Atmospheric Ammonia in the Kanto Region of Japan

  • SAKURAI, Tatsuya;SUZUKI, Takeru;YOSHIOKA, Misato
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.59-66
    • /
    • 2018
  • This study aims to evaluate the performance of the Air Quality Model (AQM) for the seasonal and spatial distribution of the $NH_3$ concentration in the atmosphere. To obtain observational data for the model validation, observations based on biweekly sampling have been conducted using passive samplers since April 2015 at multiple monitoring sites in the Tokyo metropolitan area. AQM, built based on WRF/CMAQ, was applied to predict the $NH_3$ concentration observed from April 2015 to March 2016. The simulation domain includes the Kanto region, which is the most densely populated area in Japan. Because the area also contains large amount of livestock, especially in its northern part, the density of the $NH_3$ emissions derived from human activities and agriculture there are estimated to be the highest in Japan. In the model validation, the model overestimated the observed $NH_3$ concentration in the summer season and underestimated it in the winter season. In particular, the overestimation in the summer was remarkable at a rural site (Komae) in Tokyo. It was found that the overestimation at Komae was caused by the transportation of $NH_3$ emitted in the northern part of the Kanto region during the night. It is suggested that the emission input used in this study overestimated the $NH_3$ emission from human sources around the Tokyo suburbs and agricultural sources in the northern part of the Kanto region in the summer season. In addition, the current emission inventories might overestimate the difference of the agricultural $NH_3$ emissions among seasons. Because the overestimation of $NH_3$ in the summer causes an overestimation of $NO_3{^-}$ in $PM_{2.5}$ in the AQM simulation, further investigation is necessary for the seasonal variation in the $NH_3$ emissions.

Effects of Subwatershed Delineation on SWAT Estimation (소유역구분이 SWAT 예측치에 미치는 영향 평가)

  • Heo, Seong-Gu;Kim, Gi-Seong;An, Jae-Hun;Im, Gyeong-Jae;Choe, Jung-Dae
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.262-273
    • /
    • 2006
  • The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and sediment simulation worldwide. In most cases, the SWAT model is first calibrated with adjustments in model parameters, and then the validation is performed. However, very little study regarding the effects on SWAT estimation of subwatershed delineation was performed. Thus, the SWAT model was applied to the Doam-dam watershed with various threshold values in subwatershed delineation in this study to examine the effects on the number of subwatershed delineated on SWAT estimation. It was found the flow effect of subwatershed delineation is negligible. However there were huge variations in SWAT estimated sediment, T-N, and T-P values with the use of various threshold value in watershed delineation. Sometimes these variations due to watershed delineation are beyond the effects of parameter adjustment in model calibration and validation. The SWAT is a semi-distributed modeling system, thus, the subwatershed characteristics are assumed to be the same for all Hydrologic Response Unit (HRU) within that subwatershed. This assumption leads to variations in the SWAT estimated sediment and nutrient output values. Therefore, it is strongly recommended the SWAT users need to use the HUR specific slope length and slope value in model runs, instead of using the slope and the corresponding slope length of the subawatershed to exclude the effects of the number of subwatershed delineated on the SWAT estimation.

  • PDF

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.