• Title/Summary/Keyword: Model validation

Search Result 3,269, Processing Time 0.057 seconds

Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest (농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로)

  • Yoojin Kang;Yejin Kim ;Jungho Im;Joongbin Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs

  • Hyoung Suk Park;Kiwan Jeon;Yeon Jin Cho;Se Woo Kim;Seul Bi Lee;Gayoung Choi;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon;Woo Sun Kim;Young Jin Ryu;Jae-Yeon Hwang
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.612-623
    • /
    • 2021
  • Objective: To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs. Materials and Methods: Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience. Results: The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988-0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618-0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001). Conclusion: The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.

Development and Validation of a Global Citizenship Education Teaching-Learning Plan and its Effects on Fostering the Global Citizenship Competencies of Elementary School Students (세계시민역량 함양을 위한 초등 가정과 세계시민교육 교수·학습 과정안 개발 및 효과 검증)

  • Kwon, Boeun;Yu, Nan Sook
    • Human Ecology Research
    • /
    • v.62 no.2
    • /
    • pp.351-368
    • /
    • 2024
  • The objectives of this study were to develop, implement a home economics education teaching-learning plan and assess its effects to enhance global citizenship competencies among upper elementary school students. The ADDIE model was employed for learner needs analysis, instructional design, development and implementation. This was followed by assessments of global citizenship competencies and class satisfaction. Based on an analysis of the core ideas associated with an area of "Living Environment and Sustainable Choice," four practical problems were designed: What actions should I take for the rational management of living resources? What actions should I take to ensure consciousness of the need to respect diversity in daily life? What actions should I take to maintain a safe and healthy living environment? What actions should I take to make sustainable choices? Based on these four practical problems, four lesson topics were developed in accordance with both the voyeur's and the critical perspectives, resulting in a total of 8 sessions. The subsequent delivery of an 8-session class on global citizenship education in home economics yielded significant improvements in the global citizenship competencies (knowledge, skills, attitudes, and willingness to act) of 37 elementary school students immediately after the sessions. The significance of this study lies in its focus on the core ideas of the revised 2022 curriculum, thereby offering directions for the development of global citizenship education within the curriculum.

Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study

  • Phisamon Kengkard;Jirachaya Choovuthayakorn;Chollada Mahakkanukrauh;Nadee Chitapanarux;Pittayarat Intasuwan;Yanumart Malatong;Apichat Sinthubua;Patison Palee;Sakarat Na Lampang;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.86-93
    • /
    • 2023
  • Age at death estimation has always been a crucial yet challenging part of identification process in forensic field. The use of human skeletons have long been explored using the principle of macro and micro-architecture change in correlation with increasing age. The clavicle is recommended as the best candidate for accurate age estimation because of its accessibility, time to maturation and minimal effect from weight. Our study applies pre-trained convolutional neural network in order to achieve the most accurate and cost effective age estimation model using clavicular bone. The total of 988 clavicles of Thai population with known age and sex were radiographed using Kodak 9000 Extra-oral Imaging System. The radiographs then went through preprocessing protocol which include region of interest selection and quality assessment. Additional samples were generated using generative adversarial network. The total clavicular images used in this study were 3,999 which were then separated into training and test set, and the test set were subsequently categorized into 7 age groups. GoogLeNet was modified at two layers and fine tuned the parameters. The highest validation accuracy was 89.02% but the test set achieved only 30% accuracy. Our results show that the use of medial clavicular radiographs has a potential in the field of age at death estimation, thus, further study is recommended.

A Novel, Deep Learning-Based, Automatic Photometric Analysis Software for Breast Aesthetic Scoring

  • Joseph Kyu-hyung Park;Seungchul Baek;Chan Yeong Heo;Jae Hoon Jeong;Yujin Myung
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • Background Breast aesthetics evaluation often relies on subjective assessments, leading to the need for objective, automated tools. We developed the Seoul Breast Esthetic Scoring Tool (S-BEST), a photometric analysis software that utilizes a DenseNet-264 deep learning model to automatically evaluate breast landmarks and asymmetry indices. Methods S-BEST was trained on a dataset of frontal breast photographs annotated with 30 specific landmarks, divided into an 80-20 training-validation split. The software requires the distances of sternal notch to nipple or nipple-to-nipple as input and performs image preprocessing steps, including ratio correction and 8-bit normalization. Breast asymmetry indices and centimeter-based measurements are provided as the output. The accuracy of S-BEST was validated using a paired t-test and Bland-Altman plots, comparing its measurements to those obtained from physical examinations of 100 females diagnosed with breast cancer. Results S-BEST demonstrated high accuracy in automatic landmark localization, with most distances showing no statistically significant difference compared with physical measurements. However, the nipple to inframammary fold distance showed a significant bias, with a coefficient of determination ranging from 0.3787 to 0.4234 for the left and right sides, respectively. Conclusion S-BEST provides a fast, reliable, and automated approach for breast aesthetic evaluation based on 2D frontal photographs. While limited by its inability to capture volumetric attributes or multiple viewpoints, it serves as an accessible tool for both clinical and research applications.

Application of near-infrared spectroscopy for hay evaluation at different degrees of sample preparation

  • Eun Chan Jeong;Kun Jun Han;Farhad Ahmadi;Yan Fen Li;Li Li Wang;Young Sang Yu;Jong Geun Kim
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1196-1203
    • /
    • 2024
  • Objective: A study was conducted to quantify the performance differences of the near-infrared spectroscopy (NIRS) calibration models developed with different degrees of hay sample preparations. Methods: A total of 227 imported alfalfa (Medicago sativa L.) and another 360 imported timothy (Phleum pratense L.) hay samples were used to develop calibration models for nutrient value parameters such as moisture, neutral detergent fiber, acid detergent fiber, crude protein, and in vitro dry matter digestibility. Spectral data of hay samples prepared by milling into 1-mm particle size or unground were separately regressed against the wet chemistry results of the abovementioned parameters. Results: The performance of the developed NIRS calibration models was evaluated based on R2, standard error, and ratio percentage deviation (RPD). The models developed with ground hay were more robust and accurate than those with unground hay based on calibration model performance indexes such as R2 (coefficient of determination), standard error, and RPD. Although the R2 of calibration models was mainly greater than 0.90 across the feed value indexes, the R2 of cross-validations was much lower. The R2 of cross-validation varies depending on feed value indexes, which ranged from 0.61 to 0.81 in alfalfa, and from 0.62 to 0.95 in timothy. Estimation of feed values in imported hay can be achievable by the calibrated NIRS. However, the NIRS calibration models must be improved by including a broader range of imported hay samples in the modeling. Conclusion: Although the analysis accuracy of NIRS was substantially higher when calibration models were developed with ground samples, less sample preparation will be more advantageous for achieving rapid delivery of hay sample analysis results. Therefore, further research warrants investigating the level of sample preparations compromising analysis accuracy by NIRS.

Analysis of Wave Characteristics near Wangdeungdo through Southwest Sea Wave Hindcasting (서남해 파랑 후측모의 실험을 통한 왕등도 인근 파랑 특성 분석)

  • Young Ju Noh;Min Young Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.61-69
    • /
    • 2024
  • Wave conditions are crucial for offshore wind farm design, particularly in determining structural loads and layout. However, there is limited wave hindcasting research for the Wangdeungdo Island area, a potential offshore wind site. This study used the MIKE21 model for a year-long wave hindcast around Wangdeungdo in 2021. Validation showed high reproducibility for significant wave heights with RMSE values of 0.177 and 0.225 and Pearson correlations of 0.971 and 0.970 at Sangwangdeungdo and Buan buoys. Subsequent analysis of the wave characteristics near Wangdeungdo indicated significant seasonal variations and differences in maximum significant wave heights across locations, which are expected to significantly impact the design loads for offshore wind structures.

A Semi-analytical Approach for Numerical Analysis of Residual Stress in Oxide Scale Grown on Hot-rolled Steels (열간압연강에서 형성된 산화물 스케일의 잔류 응력 수치 분석을 위한 준해석적 방법 개발)

  • Y.-J. Jun;J.-G. Yoon;J.-M. Lee;S.-H. Kim;Y.-C. Kim;S. Nam;W. Noh
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.200-207
    • /
    • 2024
  • In this study, we developed a semi-analytical approach for the numerical analysis of residual stress in oxide scales formed on hot-rolled steels. The oxide scale, formed during the hot rolling process, experiences complex interactions due to thermal and mechanical influences, significantly affecting the material's integrity and performance. Our research focuses on integrating various stress components such as thermal stress, growth stress, and creep behavior to predict the residual stress within the oxide layer. The semi-analytical method combines analytical expressions for each stress component with numerical integration to account for their cumulative effects. Validation through instrumented indentation tests confirms the reliability of our model, which considers thermal expansion coefficient (CTE) differences, scale growth, and creep-induced stress relaxation. Our findings indicate that thermal stress resulting from CTE differences significantly impacts the overall residual stress, with growth stress contributing a compressive component during cooling, and creep behavior playing a minor role in stress relaxation. This comprehensive approach enhances the accuracy of residual stress prediction, facilitating the optimization of material design and processing conditions for hot-rolled steel products.

Multi-block PCA for Sensor Fault Detection and Diagnosis of City Gas Network (도시가스 배관망의 고장 탐지 및 진단을 위한 다중블록 PCA 적용 연구)

  • Yeon-ju Baek;Tae-Ryong Lee;Jong-Seun Kim;Hong-Cheol Ko
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.38-46
    • /
    • 2024
  • The city gas pipeline network is characterized by being widely distributed and hierarchically connected in a complex manner over a wide area. In order to monitor the status of the widely distributed network pressures with high precision, Multi-block PCA(MBPCA) is recommended. However, while MBPCA has excellent performance in identifying faulty sensors as the number of sensors increases, the fault detection performance deteriorates, and also there is a problem that the model needs to be updated entirely even if minor changes occur. In this study, we developed fault detectability index and fault identificability index to determine the effectiveness of MBPCA application block by block. Based on these indices, we distinguished MBPCA and PCA blocks and developed a fault detection and diagnostic system for the city gas pipeline network of Haean Energy Co., Ltd., and were able to solve the problems that arise when there are many sensors.