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INTRODUCTION

Developmental dysplasia of the hip (DDH) is a spectrum 
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Objective: To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental 
dysplasia of the hip (DDH) on anteroposterior (AP) radiographs.
Materials and Methods: Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a 
dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to 
label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated 
the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different 
levels of experience.
Results: The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988–0.919, 
respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618–
0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, 
and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist 
with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and 
PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001).
Conclusion: The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was 
comparable to the diagnosis by an experienced radiologist.
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of structural abnormalities ranging from mild dysplasia 
and subluxation to dislocation of the femoral head (1). 
The incidence of DDH is approximately 1.5 to 35 in 1000 
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persons, and the incidence of sonographic screening is 25 
to 50 in 1000 persons (1, 2). For the normal development 
of the hip joint, articulation of the femoral head and 
acetabulum is essential; thus, early diagnosis and treatment 
of DDH are important (1). The recommended diagnostic 
methods differ according to the patient’s age (3). Clinical 
screening is one of the most widely used screening 
methods, but the results have low reproducibility (4). 
Sonography and conventional radiography are the most 
widely used screening tools. Conventional radiography is a 
useful diagnostic tool as it is readily available at a low cost. 
The anteroposterior (AP) view, frog-leg lateral view, or von 
Rosen view can be used for the diagnosis of DDH; however, 
the hip AP view is usually sufficient for screening DDH (5). 
The diagnostic performance of conventional radiography 
for the detection of DDH in infants can vary according to 
several factors such as the patient’s age, technical adequacy, 
and reader’s experience (6). In particular, the interpreter’s 
experience can significantly affect the diagnostic accuracy 
of conventional radiography. 

Recently, machine learning has made tremendous 
progress and is considered to be an emerging technique 
for classification of images (7). Recent studies have shown 
the potential of deep learning in lesion detection and 
classification on radiologic images (8-13). Using conventional 
radiography, several studies have shown that machine learning 
can be helpful for the detection of fractures in skeletal bones 
and lesions on chest radiography (9, 14). 

To our knowledge, there have been few attempts to 
apply machine learning to the detection of DDH using 
conventional radiography. Some studies have adopted 
the classical machine learning technique (i.e., logistic 
regression) to detect DDH from the clinical features 
extracted from two- and three-dimensional ultrasounds 
(15, 16). In another study, a convolutional neural network 
(CNN)-based deep learning algorithm was applied to 
automatically measure the Sharp’s angle from the hip 
radiography (17).

In this study, we used a CNN to directly diagnose the DDH 
from conventional hip AP radiographs. The purpose of this 
study was to develop a CNN-based deep learning algorithm 
to diagnose DDH from hip AP radiographs and to validate 
the diagnostic performance of the algorithm.

MATERIALS AND METHODS

This was a retrospective study. The study was approved by 
the Institutional Review Boards of three different tertiary 
medical centers Seoul National University Hospital (SNUH), 
Seoul National University Bundang Hospital (SNUBH), and 
Pusan National University Yangsan Hospital (PNUYH) who 
waived the need for informed consent (IRB No. H-1808-
037-964).

Dataset and Labeling
At SNUH, patients younger than 12 months of age who 

were suspected of DDH and who had undergone hip AP 
radiography between January 2011 and June 2018 were 
enrolled in our study. At SNUBH and PNUYH, patients 
younger than 12 months of age who had undergone hip AP 
radiography between January 2016 and June 2018 were 
enrolled in this study. All patient data were anonymized, and 
reviewers were blinded to the diagnosis or medical history.

A total of 2601 hip AP radiographs from three different 
hospitals were collected. As two hip joint images were 
included in a single hip AP radiograph, a total of 5202 hip 
images were obtained. Patients who underwent corrective 
surgeries (87 images), had severe congenital skeletal 
dysplasia (five images) or had radiographs of suboptimal 
quality, including images taken in an inappropriate 
position (34 images), were excluded from the dataset. After 
excluding 126 inappropriate images, a total of 5076 hip 
images were included in this study. The data set consisted 
of 3433 hip images from SNUH, 1036 hip images from 
SNUBH, and 607 hip images from PNUYH (Table 1). 

To generate a reference standard, and with the use of 

Table 1. Training, Validation, and Test Datasets for DDH Detection

Hospitals Total
Training Set Validation Set Test Set

Normal DDH Normal DDH Normal DDH
SNUH 3433 2406 341 300 43 300 43
SNUBH 1036 800 32 97   5 97   5
PNUYH 607 452 19 65   3 66   2
Total 5076 3658 392 462 51 463 50

DDH = developmental dysplasia of the hip, PNUYH = Busan National University Yangsan Hospital, SNUBH = Seoul National University 
Bundang Hospital, SNUH = Seoul National University Hospital
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clinical information, the hip radiographs were independently 
reviewed and labeled by two pediatric radiologists (with 
7 and 13 years of experience, respectively). In cases of 
disagreement between the two pediatric specialists, the 
case in question was discussed by the two and a diagnosis 
was made in consensus. If consensus could not be achieved 
after discussion, the corresponding ultrasound exams were 
reviewed and discussed again. Each hip joint was evaluated 
in a single hip radiograph and classified as normal or DDH. 
A total of 16 hip radiographs showed disagreement in the 
diagnosis of DDH, and so sonographic findings were used 
to achieve a diagnosis. A diagnosis of DDH was made when 
the following criteria were met: 1) high acetabular index 
(> 30°), 2) abnormal acetabular morphology (shallow 
acetabulum) and delayed femoral head ossification 
(evidently smaller size compared to the normal side or no 
ossification center at 8 months of age), 3) abnormal femoral 
head location out of the inferior medial quadrant of the 
acetabulum, or 4) disruption of Shenton’s line (3). The 
positive and negative cases collected from each hospital 
were randomly split into three sets: 80% for training, 
10% for validation, and 10% for testing. Among the cases 
included in the test set (513 images), 41 hip joint images 
(8.0%) were obtained in infants under 4 months.

Data Preparation and Preprocessing
From each hip radiograph, both left and right hip joint 

images were extracted using the template matching, a 
technique that allows identification of an area similar to that 
of a target image. A diagram of the image extraction process 
is shown in Figure 1. Automatically cropped images were 
checked and all of the images were satisfactory for diagnosis 

and included a femoral head, acetabulum, and pubic bones. 
We collected 5076 labeled images 414 x 414 in size, which 
included 494 DDH images and 4582 normal images. To 
avoid overfitting, the training datasets were augmented 
using operators such as rotation (randomly within ± 15 
degrees), translation along the vertical and horizontal axes 
(randomly within ± 45 pixels), flipping, and scaling within 
a range (0.9–1.1). To deal with the imbalanced data in 
our class distribution, training datasets for DDH images 
were augmented by a factor of 10 times, whereas training 
datasets for normal images were augmented by a factor of 4 
times. As a result, 3920 DDH and 14632 normal images were 
used for training. Training was performed after resizing the 
images from 414 x 414 to 128 x 128.

Deep Learning Algorithm
The proposed CNN classifier evaluates the abnormality 

of hip joint images extracted from hip AP radiographs 
(18). The architecture of the proposed network is shown in 
Figure 1. Each of the four brown boxes and one green box 
consists of multiple layers such as 3 x 3 convolution with 
a stride of 1, rectified linear unit (19) activation function, 
and batch normalization (20). Each box is followed by 
max-pooling with a stride of 2 and a dropout layer with 
a dropout rate of 25%. The last three bars (yellow and 
purple) denote the fully connected layers, each followed 
by a dropout layer. The last fully connected layer in the 
purple bar was followed by the Softmax layer (21) instead 
of a dropout layer. The number below each box denotes the 
number of feature maps (or output units). Cross-entropy 
(22) was adopted as a loss function for classification. 
The proposed network was minimized using the Adam 
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Fig. 1. Diagram of the proposed method for detection of DDH. BN = batch normalization, conv = convolution, DDH = developmental 
dysplasia of the hip, ReLU = rectified linear unit
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optimizer (23), and a learning rate of 0.0001, mini-batch 
size of 16, and 100 epochs were used for training. The 
training was implemented using Tensorflow (24) on a GPU 
(NVIDIA, Titan Xp. 12GB) system. We generated heatmaps 
to determine which portion of the image the deep learning 
algorithm recognized to differentiate DDHs from normal 
hips. Heatmaps generated by a gradient-weighted class 
activation mapping were combined with the corresponding 
hip joint images (25).

Diagnostic Performance of the Deep Learning Algorithm
The test set was evaluated using the trained CNN 

algorithm. With an optimal cut-off probability value 
of 0.001, we constructed 2 x 2 tables and calculated 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy. The optimal 
cut-off was determined such that the sum of sensitivity and 
specificity was maximized.

We also evaluated the diagnostic performance of 
multiclass classification. Based on the probability values, 
cases with a probability value of less than 0.001 were 
classified as normal, and cases with a probability value 
of more than 0.999 were classed as DDH. The remainders, 
with a probability value between 0.001 and 0.999, were 
considered indeterminate. PPV and NPV were calculated 
with this multiclass classification. 

We also constructed a receiver operating characteristics 
curve (ROC) plot and a precision-recall curve (PRC) plot. 
The areas under the ROC (AUROC) and PRC (AUPRC) plots 
were calculated. We generated heatmaps to determine 
which portion of the image the deep learning algorithm 
recognized to differentiate DDHs from normal hips.

Human Readout by a Radiologist
Three invited radiologists performed image reviews of 

the test set. Reviewer 1 had nine years of experience in 
radiology, including pediatric radiology. Reviewer 2 had five 
years of experience in radiology without any experience 

in pediatric radiology. Reviewer 3. had three years of 
experience in radiology without any experience in pediatric 
radiology. All three reviewers were asked to independently 
label patched hip images on a 5-point scale for DDH (1, 
definitely normal; 2, probably normal; 3, indeterminate; 
4, probable DDH; and 5, definite DDH). The reviewers were 
blinded to the clinical information of each patient, and the 
reviewers labeled the images using patched unilateral hip 
images without a contralateral hip image.

Comparison with Human Readers
The sensitivity, specificity, PPV, NPV, and accuracy of the 

diagnostic performance of the three human readers were 
also calculated. To calculate the sensitivity and specificity 
of the diagnosis of DDH, the labels were dichotomized 
into normal (label 1 and 2) and DDH (label 3, 4, and 5). 
McNemar’s test was conducted to compare the diagnostic 
performance of the deep learning algorithm with that of 
each of the three radiologists.

We constructed ROC and PRC plots for human readout. 
The AUROC and AUPRC were compared between the deep 
learning algorithm and each of the three different human 
reviewers. All data were analyzed using MedCalc version 
12.7 (MedCalc Software). 

Subgroup Analysis by Age Group
To analyze the diagnostic performance of the proposed 

algorithm and radiologists by patient age group (patients 
under 4 months versus patients over 4 months of age) a 
subgroup analysis was performed. We constructed 2 x 2 
tables and calculated the sensitivity, specificity, PPV, NPV, 
and accuracy in two different age groups. We also calculated 
the AUROC and AUPRC for the two different age groups. An 
independent ROC comparison analysis was performed to 
compare the diagnostic performance between the two age 
groups.

Table 2. Diagnostic Performance of Deep Learning in Diagnosing DDH
Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC of ROC Plot AUC of PRC Plot

Deep learning 
  algorithm

94.0 (83.5–98.7) 98.9 (97.5–99.6) 90.4 (79.7–95.8) 99.4 (98.1–99.8) 0.988 (0.974–0.995) 0.973 (0.937–0.995)

Radiologist 1 96.0 (86.3–99.5) 99.1 (97.8–99.8) 92.3 (81.9–97.0) 99.6 (98.3–99.9) 0.988 (0.974–0.995) 0.958 (0.897–0.919)
Radiologist 2 96.0 (86.3–99.5) 89.0 (85.8–91.7) 48.5 (41.9–55.1) 99.5 (98.1–99.9) 0.959 (0.939–0.975) 0.835 (0.728–0.919)
Radiologist 3 84.0 (70.9–92.8) 85.8 (82.2–88.8) 38.9 (33.0–45.1) 98.0 (96.3–98.9) 0.919 (0.892–0.941) 0.618 (0.468–0.761)

Data in the parentheses are 95% confidence intervals. AUC = area under the curve, NPV = negative predictive value, PPV = positive 
predictive value, PRC = precision-recall, ROC = receiver operating characteristics
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RESULTS

Table 2 shows the diagnostic performance of the deep 
learning algorithm and three human reviewers. Figure 2 
shows the confusion matrices of the human readers and the 
developed model at the optimal cut-off probability value.

Evaluation of the Diagnostic Performance of the Deep 
Learning Algorithm

The sensitivity and specificity of the deep learning 

algorithm in diagnosing DDH were 98.0% and 98.1%, 
respectively, while the PPV and NPV were 84.5% and 99.8%, 
respectively. With a binary classification, among 513 cases 
in the test set, there was one false negative case (0.2%) 
and nine false positive cases (1.8%). When the images were 
labeled 0 for normal cases and 1 for DDHs, most cases (497 
of 513; 96.9%) had probability values less than 0.001 or 
more than 0.999. Sixteen out of 513 cases (3.1%) had a 
probability value between 0.001 and 0.999, and all false 
positive cases in the binary classification were included 

Fig. 2. Confusion matrices of the model at the optimal operating point and for each human reader in the test set. In the confusion 
matrices, predicted label and target label refer to labeling by algorithm or radiologists and the reference standard, respectively. Label 0 and 1 
denote “no DDH” and “DDH,” respectively. The figures in the blue box indicate the diagnostic accuracy. NPV = negative predictive value, PPV = 
positive predictive value
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in this range. On multiclass classification, PPV and NPV 
increased to 100% and 99.8%, respectively. The AUROC of 
the deep learning algorithm was 0.988 in the test set (Fig. 
3A), and the AUPRC was 0.973 (Fig. 3B).

In the generated heatmaps, the intensities of the 
heatmaps were concentrated around the hip joints in most 
cases, regardless of the presence or absence of ossification 
centers at the femoral head. 

Representative cases from the test set are shown 
in Figures 4, 5, and 6. Figure 4 shows cases correctly 
diagnosed as DDH by the proposed deep learning algorithm. 
Figures 5 and 6 show representative false negative and false 
positive cases. 

Comparison with Human Readers 
The sensitivity and specificity of the diagnoses made by 

the radiologists ranged from 84.0 to 96.0% and 85.8 to 
99.1%, respectively, while the PPV and NPV ranged from 
38.9 to 92.3% and 98.0 to 99.6%, respectively. The accuracy 
of the three human reviewers ranged from 85.6 to 98.8%.

Based on the McNemar’s test, there was no significant 
difference in the diagnosis of DDH (p = 0.180) made by 
the algorithm and the experienced pediatric radiologist 
(reviewer 1). However, there were significant differences in 

the diagnosis of DDH between the inexperienced radiologists 
(reviewer 2 and 3) compared to the experienced pediatric 
radiologist (p < 0.001) and the algorithm (p < 0.001). 

Figure 3 shows the AUROC and AUPRC of the proposed 
algorithm and the three different human reviewers. The 
AUROCs for the three reviewers were 0.988, 0.959, and 
0.919. In the ROC comparison, the AUROC of the proposed 
algorithm was not significantly different from that of 
reviewer 1 and reviewer 2 (p = 0.988 and p = 0.147, 
respectively). The AUROC curve of the proposed algorithm 
was significantly higher than that of reviewer 3 (p < 0.001). 
There was also a significant difference in AUROC between 
reviewer 1 and reviewer 3 (p = 0.003). For the three 
human reviewers, the AUPRC plots were 0.958, 0.835, and 
0.618 for radiologists 1, 2, and 3, respectively. In the PRC 
comparison, the AUPRC of the proposed algorithm was not 
significantly different from that of reviewer 1 (p = 0.630). 
The AUPRC of the proposed algorithm was significantly 
higher than those of reviewers 2 and 3 (p = 0.003 and p < 
0.001, respectively). 

Subgroup Analysis
Tables 3 and 4 show the diagnostic performance of the 

proposed algorithm and the radiologists in the two different 
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Fig. 4. Representative cases with hip anteroposterior radiographs, cropped image, and heatmap using class activation mapping. 
A. A case of DDH on the right side. B, C. A cropped image and heatmap showing dislocation of the right hip and increased acetabular angle 
with disruption of Shenton’s line. The probability value derived by the deep learning algorithm was 1.000. Three invited radiologists labeled this 
case as DDH (label 5). D. A case of DDH on the left side. E, F. A cropped image and heatmap showing mild lateral subluxation of the left femoral 
head and increased acetabular angle with disruption of Shenton’s line. The probability value derived by the deep learning algorithm was 1.000. 
Three invited radiologists labeled this case as DDH (label 5). G. A case of DDH on the right side. H, I. A cropped image and heatmap showing an 
increased acetabular angle with disruption of Shenton’s line. The probability value derived by the deep learning algorithm was 1.000. Two invited 
radiologists labeled this case as DDH (label 4 from radiologist 1 and label 3 from radiologist 2) and one radiologist (radiologist 3) misclassified 
this case as normal (label 2).
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age groups. Independent ROC comparison analysis (p > 
0.05) revealed no significant differences in the diagnostic 
performance of the proposed algorithm nor the three 
radiologists between the two different age groups (< 4 
months of age vs. ≥ 4 months of age).

DISCUSSION

We proposed a deep learning-based method to evaluate 

DDH from hip joint images automatically extracted from hip 
AP radiographs. Since the proposed algorithm was trained 
to evaluate the abnormality of cropped hip joint images 
instead of entire hip AP radiographs, it can effectively 
learn the features of DDH from a limited number of hip 
radiographs. The algorithm was able to provide a fast and 
accurate diagnosis of DDH. The implementation duration 
to evaluate DDH from the hip AP view is under a few 
milliseconds.

Fig. 5. A false negative case using the deep learning algorithm. 
A. A 3-month-old girl with DDH on the left side. There were no specific findings in the physical examination. B, C. A cropped image and heatmap 
of the left hip on conventional hip anteroposterior radiographs showing increased acetabular angle with mild dysplasia of acetabulum (arrow 
heads). D. The left hip demonstrated a reduced alpha angle (53–55°) with a round acetabular edge (arrowhead) in the ultrasound exam. The 
probability value derived by the deep learning algorithm was 0. Two invited radiologists labeled this case as DDH (label 3 from radiologist 1 and 
label 5 from radiologist 2) and one radiologist (radiologist 3) misclassified this case as normal (label 1).
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As summarized in Table 2, in this study, the diagnostic 
performance of the deep learning algorithm was better than 
that of the radiologists without experience in pediatric 
radiology and was comparable to that of an experienced 
pediatric radiologist. The AUROC curve of the developed 
deep learning algorithm for the identification of DDH in 
conventional hip radiography in pediatric patients under 
12 months of age was 0.988. As they are more informative 
than ROC plots, we constructed PRC plots for evaluating 
binary classifiers on imbalanced datasets (26). The usage 
and interpretation of an imbalanced dataset are some of the 
challenges in the field of machine learning, and the dataset 
used in this study was imbalanced with more negative cases 

than positive cases. The area under the PRC plot of the 
deep learning algorithm showed a higher value than those 
of human reviewers. 

In the test set, 10 (1.9%) out of 513 cases were 
misdiagnosed by the proposed deep learning algorithm. 
Even though the number of misdiagnosed cases was low 
in the binary classification, the diagnostic performance 
can be improved with multiclass classification. Most (9 
of 10 cases) misdiagnosed cases had probability values 
between 0.001 and 0.999. If the probability value obtained 
by the proposed algorithm is in the range of 0.001 and 
0.999, it can be classified as an indeterminate case. The 
AP radiographs, classified into the indeterminate group, 

Fig. 6. A false positive case using the deep learning algorithm. 
A. A case with normal hip configuration was misclassified as DDH on the left side. B, C. The cropped image showed normal acetabular angle and 
intact Shenton’s line without subluxation of the femoral head. The probability value derived by the deep learning algorithm was 0.890. All three 
invited radiologists correctly diagnosed this case as normal. 

A B C

Table 3. Diagnostic Performance of Deep Learning in Diagnosing DDH in Infants under 4 Months of Age
Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC of ROC Plot AUC of PRC Plot

Deep learning 
  algorithm

80.0 (28.4–99.5) 94.4 (81.3–99.3) 66.7 (32.7–89.2) 97.1 (85.5–99.5) 0.886 (0.748–0.964) 0.863 (0.536–1.000)

Radiologist 1 100 (47.8–100.0) 100 (90.3–100.0) 100 100 1.000 (0.914–1.000) 0.994 (1.000–1.000)
Radiologist 2 100 (47.8–100.0) 66.7 (49.0–81.4) 29.4 (20.8–39.8) 100 0.942 (0.821–0.991) 0.720 (0.264–1.000)
Radiologist 3 80.0 (28.4–99.5) 88.9 (73.9–96.9) 50.0 (26.5–73.5) 97.0 (84.7–99.5) 0.836 (0.687–0.933) 0.590 (0.125–1.000)

Data in the parentheses are 95% confidence intervals.

Table 4. Diagnostic Performance of Deep Learning in Diagnosing DDH in Infants over 4 Months of Age
Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC of ROC Plot AUC of PRC Plot

Deep learning 
  algorithm

100 (92.1–100.0) 98.4 (96.7–99.3) 86.5 (75.5–93.1) 100 0.998 (0.989–1.000) 0.986 (0.965–0.998)

Radiologist 1 95.6 (84.9–99.5) 99.1 (97.6–99.7) 91.5 (80.2–96.6) 99.5 (98.2–99.9) 0.986 (0.971–0.995) 0.954 (0.887–0.997)
Radiologist 2 95.6 (84.9–99.5) 90.9 (87.7–93.4) 52.4 (44.8–60.0) 99.5 (98.0–99.9) 0.961 (0.939–0.977) 0.863 (0.761–0.937)
Radiologist 3 84.4 (70.5–93.5) 85.5 (81.8–88.7) 38.0 (32.0–44.3) 98.1 (96.3–99.0) 0.927 (0.900–0.949) 0.628 (0.470–0.767)

Data in the parentheses are 95% confidence intervals.
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can be manually diagnosed by pediatric experts, or further 
evaluated using ultrasound exams, if necessary. Such a 
semi-automatic approach could reduce the misdiagnosis of 
DDH patients in clinical practice.

In heatmaps, the intensities were mostly concentrated 
at the hip joint and not at other bone structures or the 
genital shield. This indicates that the deep learning 
algorithm we developed recognized the hip joint well in 
these images and that the configuration of hip joints was 
used for the determination of hip dysplasia. The intensities 
of the heatmaps were concentrated at the femoral head, 
acetabulum, ischium, and pubic bones, regardless of the 
presence or absence of ossification centers on the femoral 
head. However, in the case of a false prediction, the 
intensities were not concentrated in the femoral head or 
acetabulum.

Whether universal screening for DDH is beneficial 
remains controversial (27). In most studies, there is no 
evidence that universal screening decreases late diagnosis 
or improves clinical outcomes (28-30). However, selective 
screening may be worthwhile, especially for groups at 
high-risk of DDH (27, 31). There are three important 
methods used to diagnose or screen DDH: physical 
examination, ultrasound, and conventional radiography. 
Physical examination is an important component and a 
cornerstone for referral to radiologic examination. However, 
the diagnostic performance of the physical exam alone 
is variable and has low accuracy; the sensitivity of the 
physical examination has been reported to be 13–60% 
(4). Ultrasound is the study of choice for evaluating the 
hip in neonates and infants under 6 months of age when 
the femoral head ossifies (1, 3). One of the advantages of 
ultrasound over conventional radiography is that it shows 
the cartilage and soft tissue of the hip (1). However, 
ultrasound requires a learning curve to achieve the 
appropriate level of performance, and the results have inter-
observer variability (32-34). Conventional hip radiography 
is more readily available at a lower cost than ultrasound 
(27). Moreover, conventional radiography has a lower false 
positive rate than ultrasound between 4 and 6 months of 
age, which is a watershed period (27). Ultrasonography is 
particularly susceptible to mild dysplasia, and the likelihood 
of false positives or false negatives is relatively high (31). 
After 6 months of age, at the onset of the ossification of 
the femoral head, radiography is the standard imaging 
method to evaluate DDH (3). Conventional radiography in 
4–6 months old infants is usually appropriate for detecting 

DDH (35, 36). The proposed algorithm showed excellent 
diagnostic performance, which was comparable to that of 
experienced radiologists in patients over 4 months of age. 
Using the proposed algorithm might allow efficient and 
accurate screening of DDH without an experienced clinician 
or radiologist. Patients could subsequently be referred to 
a specialist. Although there was no significant difference 
in the diagnostic performance of the proposed algorithm 
between age groups younger than 4 months and age 
groups older than 4 months, the assessment of the clinical 
feasibility of the proposed algorithm in infants younger 
than 4 months of age was limited by the small number of 
participants in this age group. In addition, the use of hip 
radiography is usually not appropriate for the diagnosis or 
screening of DDH in infants younger than 4 months of age 
(37). Thus, the use of the proposed algorithm in infants 
under 4 months old is limited, and ultrasound may be more 
appropriate for the diagnosis or screening of DDH in this 
age group.

This study has several limitations. First, human readout 
did not perfectly reflect the diagnostic performance of DDH 
in real clinical situations. The developed deep learning 
algorithm used in this study was designed to analyze a 
patched unilateral hip without any information about 
contralateral hip configuration. To compare the diagnostic 
performance between the developed algorithm and the 
human reviewers, three reviewers were asked to evaluate 
the images with unilateral hip information only which is 
different from an actual clinical setting. Since information 
from the contralateral hip helps diagnose DDH, the 
diagnostic performance of human reviewers was relatively 
under-estimated. Second, the developed algorithm and 
the radiologists were blinded to the patient’s age, which 
can help the diagnosis of DDH through the assessment of 
delays in femoral head ossification. The lack of external 
validation is another limitation of this study, and the 
internal validation may exaggerate the performance of the 
developed deep learning algorithm.

In conclusion, the proposed deep learning algorithm 
provided an accurate diagnosis of DDH on conventional 
hip radiographs, which was comparable to that of an 
experienced radiologist.
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