• Title/Summary/Keyword: Model surgery

Search Result 1,504, Processing Time 0.032 seconds

3-Dimensional Model Simulation Craniomaxillofacial Surgery using Rapid Prototyping Technique (신속 조형 기술로 제작된 인체모형을 이용한 술전 모의 두개악안면성형수술)

  • Jung, Kyung In;Baek, Rong-Min;Lim, Joo Hwan;Park, Sung Gyu;Heo, Chan Yeong;Kim, Myung Good;Kwon, Soon Sung
    • Archives of Plastic Surgery
    • /
    • v.32 no.6
    • /
    • pp.796-797
    • /
    • 2005
  • In plastic and reconstructive craniomaxillofacial surgery, careful preoperative planning is essential to get a successful outcome. Many craniomaxillofacial surgeons have used imaging modalities like conventional radiographs, computed tomography(CT) and magnetic resonance imaging(MRI) for supporting the planning process. But, there are a lot of limitations in the comprehension of the surgical anatomy with these modalities. Medical models made with rapid prototyping (RP) technique represent a new approach for preoperative planning and simulation surgery. With rapid prototyping models, surgical procedures can be simulated and performed interactively so that surgeon can get a realistic impression of complex structures before surgical intervention. The great advantage of rapid prototyping technique is the precise reproduction of objects from a 3-dimensional reconstruction image as a physical model. Craniomaxillofacial surgeon can establish treatment strategy through preoperative simulation surgery and predict the postoperative result.

Biomechanical Changes of the Lumbar Segment after Total Disc Replacement : Charite$^{(R)}$, Prodisc$^{(R)}$ and Maverick$^{(R)}$ Using Finite Element Model Study

  • Kim, Ki-Tack;Lee, Sang-Hun;Suk, Kyung-Soo;Lee, Jung-Hee;Jeong, Bi-O
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.446-453
    • /
    • 2010
  • Objective : The purpose of this study was to analyze the biomechanical effects of three different constrained types of an artificial disc on the implanted and adjacent segments in the lumbar spine using a finite element model (FEM). Methods : The created intact model was validated by comparing the flexion-extension response without pre-load with the corresponding results obtained from the published experimental studies. The validated intact lumbar model was tested after implantation of three artificial discs at L4-5. Each implanted model was subjected to a combination of 400 N follower load and 5 Nm of flexion/extension moments. ABAQUS$^{TM}$ version 6.5 (ABAQUS Inc., Providence, RI, USA) and FEMAP version 8.20 (Electronic Data Systems Corp., Plano, TX, USA) were used for meshing and analysis of geometry of the intact and implanted models. Results : Under the flexion load, the intersegmental rotation angles of all the implanted models were similar to that of the intact model, but under the extension load, the values were greater than that of the intact model. The facet contact loads of three implanted models were greater than the loads observed with the intact model. Conclusion : Under the flexion load, three types of the implanted model at the L4-5 level showed the intersegmental rotation angle similar to the one measured with the intact model. Under the extension load, all of the artificial disc implanted models demonstrated an increased extension rotational angle at the operated level (L4-5), resulting in an increase under the facet contact load when compared with the adjacent segments. The increased facet load may lead to facet degeneration.

3D-printing Bone Model for Surgical Planning of Corrective Osteotomy for Treatment of Medial Patellar Luxation in a Dog

  • Jeong, Bumsoo;Jung, Jaemin;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.385-388
    • /
    • 2016
  • A 2-year-old, castrated male Chihuahua dog was referred for revision surgery for reluxation of the patella following surgery for medial patellar luxation (MPL) of the left stifle joint. On general inspection, the patient showed bilateral hindlimb weight-bearing lameness. On physical examination, bilateral non-reducible MPL was detected through palpation. Radiographs revealed bone deformities of both hindlimbs. Computed tomography (CT) was applied for a three-dimensional (3D) printing bone model to establish an accurate surgical plan. The bone plate was pre-contoured over the 3D-printing bone model after execution of corrective osteotomy and sterilized prior to use in surgery. Corrective osteotomy was performed through a staged, bilateral procedure. The patient showed improvement of limb function following surgery without reluxation of the patella. The use of 3D-printing bone model for accurate surgical planning of corrective osteotomy appears to be effective in increasing the accuracy of surgery. That may lead to successful surgical outcomes.

A Logistic Model Including Risk Factors for Lymph Node Metastasis Can Improve the Accuracy of Magnetic Resonance Imaging Diagnosis of Rectal Cancer

  • Ogawa, Shimpei;Itabashi, Michio;Hirosawa, Tomoichiro;Hashimoto, Takuzo;Bamba, Yoshiko;Kameoka, Shingo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.707-712
    • /
    • 2015
  • Background: To evaluate use of magnetic resonance imaging (MRI) and a logistic model including risk factors for lymph node metastasis for improved diagnosis. Materials and Methods: The subjects were 176 patients with rectal cancer who underwent preoperative MRI. The longest lymph node diameter was measured and a cut-off value for positive lymph node metastasis was established based on a receiver operating characteristic (ROC) curve. A logistic model was constructed based on MRI findings and risk factors for lymph node metastasis extracted from logistic-regression analysis. The diagnostic capabilities of MRI alone and those of the logistic model were compared using the area under the curve (AUC) of the ROC curve. Results: The cut-off value was a diameter of 5.47 mm. Diagnosis using MRI had an accuracy of 65.9%, sensitivity 73.5%, specificity 61.3%, positive predictive value (PPV) 62.9%, and negative predictive value (NPV) 72.2% [AUC: 0.6739 (95%CI: 0.6016-0.7388)]. Age (<59) (p=0.0163), pT (T3+T4) (p=0.0001), and BMI (<23.5) (p=0.0003) were extracted as independent risk factors for lymph node metastasis. Diagnosis using MRI with the logistic model had an accuracy of 75.0%, sensitivity 72.3%, specificity 77.4%, PPV 74.1%, and NPV 75.8% [AUC: 0.7853 (95%CI: 0.7098-0.8454)], showing a significantly improved diagnostic capacity using the logistic model (p=0.0002). Conclusions: A logistic model including risk factors for lymph node metastasis can improve the accuracy of MRI diagnosis of rectal cancer.

Reliability study of 6-axis model surgery simulator for orthognathic surgery (6축 모형수술 시뮬레이터의 정확도에 관한 연구)

  • Jeon, Jae-Ho;Lee, Hyung-Chul;Ji, Hyun-Jin;Jeon, Yeong-Jin;Kim, Yong-Il;Son, Woo-Sung;Park, Soo-Byung;Kim, Sung-Sik;Whang, Dae-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • The purpose of this study was to evaluate the reliability of 6-axis model surgery simulator (6AMSS) for orthognathic surgery. A rectangular parallelepiped plastic block was assembled to model-mounting plate of 6AMSS. Left-right (X), anterior-posterior (Y), up-down (Z) translation and pitching (${\phi}X$), rolling (${\phi}Y$) and yawing (${\phi}Z$) rotation was planned and performed using 6AMSS. The actual translation and rotation were measured with dial gauge and precisional protractor, respectively. Comparison between the planned and actual movements of plastic block for each variable were made using paired t- test. Statistical analysis for X, Y, Z, ${\phi}X$, ${\phi}Y$ and ${\phi}Z$ movement have shown no significant differences between planned and actual movement (P > 0.05). This indicate that model surgery performed with the aid of the 6AMSS is accurate in 3D translation and rotation. The 6AMSS is practically useful for accurate fabrication of surgical splint for orthognathic surgery.

Moderating Effect of Structural Complexity on the Relationship between Surgery Volume and in Hospital Mortality of Cancer Patients (일부 암 종의 수술량과 병원 내 사망률의 관계에서 구조적 복잡성의 조절효과)

  • Youn, Kyungil
    • Health Policy and Management
    • /
    • v.24 no.4
    • /
    • pp.380-388
    • /
    • 2014
  • Background: The volume of surgery has been examined as a major source of variation in outcome after surgery. This study investigated the direct effect of surgery volume to in hospitals mortality and the moderating effect of structural complexity-the level of diversity and sophistication of technology a hospital applied in patient care-to the volume outcome relationship. Methods: Discharge summary data of 11,827 cancer patients who underwent surgery and were discharged during a month period in 2010 and 2011 were analyzed. The analytic model included the independent variables such as surgery volume of a hospital, structural complexity measured by the number of diagnosis a hospital examined, and their interaction term. This study used a hierarchical logistic regression model to test for an association between hospital complexity and mortality rates and to test for the moderating effect in the volume outcome relationship. Results: As structural complexity increased the probability of in-hospital mortality after cancer surgery reduced. The interaction term between surgery volume and structural complexity was also statistically significant. The interaction effect was the strongest among the patients group who had surgery in low volume hospitals. Conclusion: The structural complexity and volume of surgery should be considered simultaneously in studying volume outcome relationship and in developing policies that aim to reduce mortality after cancer surgery.

Improving the Performance of Risk-adjusted Mortality Modeling for Colorectal Cancer Surgery by Combining Claims Data and Clinical Data

  • Jang, Won Mo;Park, Jae-Hyun;Park, Jong-Hyock;Oh, Jae Hwan;Kim, Yoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.2
    • /
    • pp.74-81
    • /
    • 2013
  • Objectives: The objective of this study was to evaluate the performance of risk-adjusted mortality models for colorectal cancer surgery. Methods: We investigated patients (n=652) who had undergone colorectal cancer surgery (colectomy, colectomy of the rectum and sigmoid colon, total colectomy, total proctectomy) at five teaching hospitals during 2008. Mortality was defined as 30-day or in-hospital surgical mortality. Risk-adjusted mortality models were constructed using claims data (basic model) with the addition of TNM staging (TNM model), physiological data (physiological model), surgical data (surgical model), or all clinical data (composite model). Multiple logistic regression analysis was performed to develop the risk-adjustment models. To compare the performance of the models, both c-statistics using Hanley-McNeil pair-wise testing and the ratio of the observed to the expected mortality within quartiles of mortality risk were evaluated to assess the abilities of discrimination and calibration. Results: The physiological model (c=0.92), surgical model (c=0.92), and composite model (c=0.93) displayed a similar improvement in discrimination, whereas the TNM model (c=0.87) displayed little improvement over the basic model (c=0.86). The discriminatory power of the models did not differ by the Hanley-McNeil test (p>0.05). Within each quartile of mortality, the composite and surgical models displayed an expected mortality ratio close to 1. Conclusions: The addition of clinical data to claims data efficiently enhances the performance of the risk-adjusted postoperative mortality models in colorectal cancer surgery. We recommended that the performance of models should be evaluated through both discrimination and calibration.

Utilization of desktop 3D printer-fabricated "Cost-Effective" 3D models in orthognathic surgery

  • Narita, Masato;Takaki, Takashi;Shibahara, Takahiko;Iwamoto, Masashi;Yakushiji, Takashi;Kamio, Takashi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.24.1-24.7
    • /
    • 2020
  • Background: In daily practice, three-dimensional patient-specific jawbone models (3D models) are a useful tool in surgical planning and simulation, resident training, patient education, and communication between the physicians in charge. The progressive improvements of the hardware and software have made it easy to obtain 3D models. Recently, in the field of oral and maxillofacial surgery, there are many reports on the benefits of 3D models. We introduced a desktop 3D printer in our department, and after a prolonged struggle, we successfully constructed an environment for the "in-house" fabrication of the previously outsourced 3D models that were initially outsourced. Through various efforts, it is now possible to supply inexpensive 3D models stably, and thus ensure safety and precision in surgeries. We report the cases in which inexpensive 3D models were used for orthodontic surgical simulation and discuss the surgical outcomes. Review: We explained the specific CT scanning considerations for 3D printing, 3D printing failures, and how to deal with them. We also used 3D models fabricated in our system to determine the contribution to the surgery. Based on the surgical outcomes of the two operators, we compared the operating time and the amount of bleeding for 25 patients who underwent surgery using a 3D model in preoperative simulations and 20 patients without using a 3D model. There was a statistically significant difference in the operating time between the two groups. Conclusions: In this article, we present, with surgical examples, our in-house practice of 3D simulation at low costs, the reality of 3D model fabrication, problems to be resolved, and some future prospects.

Clinical Outcomes of Perioperative Geriatric Intervention in the Elderly Undergoing Hip Fracture Surgery

  • Jang, Il-Young;Lee, Young Soo;Jung, Hee-Won;Chang, Jae-Suk;Kim, Jung Jae;Kim, Hye-Jin;Lee, Eunju
    • Annals of Geriatric Medicine and Research
    • /
    • v.20 no.3
    • /
    • pp.125-130
    • /
    • 2016
  • Background: Conventionally, elderly hip fracture patients are assessed by orthopedists to decide whether they need geriatric intervention. We aimed to evaluate the effect of perioperative geriatric intervention on healthcare outcomes in patients undergoing surgery for hip fractures. Methods: Our care model for hip fracture surgery resembles a combination of a routine geriatric consultation model and a geriatric ward model. We retrospectively reviewed the medical records of patients aged ${\geq}65years$ undergoing surgery for hip fracture at a single tertiary hospital from January 2010 to December 2013. We assessed comorbidity, indwelling status, fracture type, and mode of anesthesia. We also evaluated in-hospital expenditure, duration of admission, disposition at discharge and 1-year mortality as clinical outcomes. We developed a propensity score model using the variables of age, cholesterol, and creatinine and examined the effect of perioperative geriatric intervention on intergroup differences of clinical variables. Results: Among 639 patients, 138 patients received the geriatric intervention and 501 patients received the usual care. Univariate analysis showed that factors such as age; Charlson comorbidity index; and serum levels of cholesterol, albumin, and creatinine differed significantly between these 2 groups. There was no significant difference between the groups in terms of 1-year mortality, disposition at discharge, and in-hospital expenditure in the propensity matched model. However, the duration of hospitalization was shorter in the intervention group ($8.9{\pm}0.8days$) than in the usual care group ($14.2{\pm}3.7days$, p=0.006). Conclusion: This care model of geriatric intervention for patients with hip fracture is associated with reduced hospitalization duration.