• Title/Summary/Keyword: Model scanned digital model

Search Result 70, Processing Time 0.028 seconds

Validity, Reliability and Reproducibility of Space Analysis using Digital Model taken via Model Scanner and Intraoral Scanner: An In vivo Study (모델 스캐너와 구내 스캐너로 획득한 디지털 모형에서 시행한 공간 분석의 타당도, 신뢰도, 재현성 평가)

  • Park, Seohyun;Kim, Jongsoo;Oh, Sohee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.176-187
    • /
    • 2020
  • The purpose of this study is to evaluate validity, reliability and reproducibility of tooth width (TW), arch length (AL) and arch length discrepancy (ALD) measured on a digital model taken via 3-dimensional model scanner and intraoral scanner compared to a plaster model. A total of 30 patients aged 12 to 18 were eligible for the study. 3 types of models were acquired from each patient: a conventional plaster model (P), a model scanned digital model (MSD) taken via Freedom UHD® and an intraoral scanned digital model (ISD) taken via CS3600® in-vivo. The reliability of TW and AL in each group was evaluated using Pearson's correlation coefficient, while the reproducibility was evaluated with intraclass correlation coefficient. The validity of space analysis was assessed by paired t-test. As a result, all measurements of P, MSD and ISD groups showed favorable reliability and reproducibility. Most of measurements for space analysis in MSD group and TW in ISD group also presented high validity. AL and ALD presented statistically significant difference between P and ISD group. The validity of measurements of space analysis in ISD group was short in doubt to valid, but clinically acceptable. Both MSD and ISD are clinically acceptable to use for space analysis but clinician should be aware that errors can be found using a digital model.

Purchase Information Extraction Model From Scanned Invoice Document Image By Classification Of Invoice Table Header Texts (인보이스 서류 영상의 테이블 헤더 문자 분류를 통한 구매 정보 추출 모델)

  • Shin, Hyunkyung
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.383-387
    • /
    • 2012
  • Development of automated document management system specified for scanned invoice images suffers from rigorous accuracy requirements for extraction of monetary data, which necessiate automatic validation on the extracted values for a generative invoice table model. Use of certain internal constraints such as "amount = unit price times quantity" is typical implementation. In this paper, we propose a noble invoice information extraction model with improved auto-validation method by utilizing table header detection and column classification.

Optimum Weight in Spline for Surface Model

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.23-33
    • /
    • 2005
  • The digital surface model (DSM) is used for several purposes in photogrammetry, remote sensing and laser scanned data such as orthoimage production, contours erivation, extraction of height information. Creation of a surface model from point-clouds (3-D sparse points) that can be derived from stereo imagery and range data (e.g. laser scanned data) can be done with several mathematical interpolation models. In this paper, thin-plate-spline (TPS) is used for digital surface modeling. Determination of suitable weight is an important problem in thin-plate function for a surface. The Voronoi algorithm has been proposed as a method for determination of the weight in thin-plate-spline. In this paper, methods has been tested for different surfaces. The results show that thin-plate-spline can be independent of weight.

  • PDF

Accuracy of 14 intraoral scanners for the All-on-4 treatment concept: a comparative in vitro study

  • Gozde, Kaya;Caglar, Bilmenoglu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.388-398
    • /
    • 2022
  • PURPOSE. This in vitro study aimed to evaluate the accuracy of 14 different intraoral scanners for the All-on-4 treatment concept. MATERIALS AND METHODS. Four implants were placed in regions 13, 16, 23, and 26 of an edentulous maxillary model that was poured with scannable Type 4 gypsum to imitate the All-on-4 concept. The cast was scanned 10 times for each of 14 intraoral scanners (Primescan, iTero 2, iTero 5D, Virtuo Vivo, Trios 3, Trios 4, CS3600, CS3700, Emerald, Emerald S, Medit i500, BenQ BIS-I, Heron IOS, and Aadva IOS 100P) after the polyether ether ketone scanbody was placed. For the control group, the gypsum model was scanned 10 times with an industrial scanner. The first of the 10 virtual models obtained from the industrial model was chosen as the reference model. For trueness, the data of the 14 dental scanners were superimposed with the reference model; for precision, the data of all 14 scanners were superimposed within the groups. Statistical analyses were performed using the Kolmogorov-Smirnov, Shapiro-Wilks, and Dunn's tests. RESULTS. Primescan showed the highest trueness and precision values (P < .005), followed by the iTero 5D scanner (P < .005). CONCLUSION. Some of these digital scanners can be used to make impressions within the All-on-4 concept. However, the possibility of data loss due to artifacts, reflections, and the inability to combine the data should be considered.

Validity of Arch Relationship Measurements in Digital Dental Models (디지털 치열 모형에서 악궁 관계 지표 측정의 타당성)

  • Ryu, Jiin;Yang, ByoungEun;Lee, Hyelim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.1
    • /
    • pp.14-24
    • /
    • 2022
  • The aim of the present study is to evaluate the validity of orthodontic measurements including tooth width, Bolton ratio, overjet and overbite on the digital dental models. Dental models of the subjects aged 12 to 18 were obtained in 3 different forms, which were conventional stone model, digital model created with Freedom HD model scanner, and digital model produced with CS3600 intraoral scanner. After measurements were made on the models, reliability and reproducibility of the measurements were evaluated by using intraclass correlation coefficient, while validity was assessed with paired t-test. As a result, significant reliability and reproducibility were verified, with intraclass correlation coefficient exceeding 0.750 in all groups. Measurements of the model scanned group showed an adequate validity in overall and anterior Bolton ratio, overjet, and overbite. Intraoral scanned models showed an adequate validity in anterior Bolton ratio, and overjet. Measurement on intraoral scanned digital models can be considered as an alternative for young children who have difficulty in taking impression. Furthermore, careful considerations on measurement error should be made in clinical situations.

Automated Feature-Based Registration for Reverse Engineering of Human Models

  • Jun, Yong-Tae;Choi, Kui-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2213-2223
    • /
    • 2005
  • In order to reconstruct a full 3D human model in reverse engineering (RE), a 3D scanner needs to be placed arbitrarily around the target model to capture all part of the scanned surface. Then, acquired multiple scans must be registered and merged since each scanned data set taken from different position is just given in its own local co-ordinate system. The goal of the registration is to create a single model by aligning all individual scans. It usually consists of two sub-steps: rough and fine registration. The fine registration process can only be performed after an initial position is approximated through the rough registration. Hence an automated rough registration process is crucial to realize a completely automatic RE system. In this paper an automated rough registration method for aligning multiple scans of complex human face is presented. The proposed method automatically aligns the meshes of different scans with the information of features that are extracted from the estimated principal curvatures of triangular meshes of the human face. Then the roughly aligned scanned data sets are further precisely enhanced with a fine registration step with the recently popular Iterative Closest Point (ICP) algorithm. Some typical examples are presented and discussed to validate the proposed system.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

IMAGE FUSION ACCURACY FOR THE INTEGRATION OF DIGITAL DENTAL MODEL AND 3D CT IMAGES BY THE POINT-BASED SURFACE BEST FIT ALGORITHM (Point-based surface best fit 알고리즘을 이용한 디지털 치아 모형과 3차원 CT 영상의 중첩 정확도)

  • Kim, Bong-Chul;Lee, Chae-Eun;Park, Won-Se;Kang, Jeong-Wan;Yi, Choong-Kook;Lee, Sang-Hwy
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.555-561
    • /
    • 2008
  • Purpose: The goal of this study was to develop a technique for creating a computerized composite maxillofacial-dental model, based on point-based surface best fit algorithm and to test its accuracy. The computerized composite maxillofacial-dental model was made by the three dimensional combination of a 3-dimensional (3D) computed tomography (CT) bone model with digital dental model. Materials and Methods: This integration procedure mainly consists of following steps : 1) a reconstruction of a virtual skull and digital dental model from CT and laser scanned dental model ; 2) an incorporation of dental model into virtual maxillofacial-dental model by point-based surface best fit algorithm; 3) an assessment of the accuracy of incorporation. To test this system, CTs and dental models from 3 volunteers with cranio-maxillofacial deformities were obtained. And the registration accuracy was determined by the root mean squared distance between the corresponding reference points in a set of 2 images. Results and Conclusions: Fusion error for the maxillofacial 3D CT model with the digital dental model ranged between 0.1 and 0.3 mm with mean of 0.2 mm. The range of errors were similar to those reported elsewhere with the fiducial markers. So this study confirmed the feasibility and accuracy of combining digital dental model and 3D CT maxillofacial model. And this technique seemed to be easier for us that its clinical applicability can good in the field of digital cranio-maxillofacial surgery.

Scanner Calibration Method for Higher Accuracy at Acquisition of Digital Imagery Data in GSIS (지형공간정보체계에서 수치영상자료 취득의 정확도 향상을 위한 주사기의 검정 방법)

  • Choi, Chul-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.153-158
    • /
    • 1993
  • It is important to establish the transformational relation between scanned image coordinates and digital image coordinates because the coordinate system of digital image is transformed from scanned image coordinate system through scanning work. And, some researches are required in scanning works to correct the deformation that is due to the motion of scanner. In this study, some procedures are applied to determine the optimal calibration model equation which can calibrate the scanner. As a result the optimal calibration model equation for the object scanner is determined The procedure of this study can applied to the calibration of other types of scanner, because the procedures are done with the analysis of geometrical properties rather than the analysis of physical properties.

  • PDF

Creating a digitized database of maxillofacial prostheses (obturators): A pilot study

  • Elbashti, Mahmoud;Hattori, Mariko;Sumita, Yuka;Aswehlee, Amel;Yoshi, Shigen;Taniguchi, Hisashi
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.219-223
    • /
    • 2016
  • PURPOSE. This study aimed to create a digitized database of fabricated obturators to be kept for patients' potential emergency needs. MATERIALS AND METHODS. A chairside intraoral scanner was used to scan the surfaces of an acrylic resin obturator. The scanned data was recorded and saved as a single standard tessellation language file using a three-dimensional modeling software. A simulated obturator model was manufactured using fused deposition modeling technique in a three-dimensional printer. RESULTS. The entire obturator was successfully scanned regardless of its structural complexity, modeled as three-dimensional data, and stored in the digital system of our clinic at a relatively small size (19.6 MB). A simulated obturator model was then accurately manufactured from these data. CONCLUSION. This study provides a proof-of-concept for the use of digital technology to create a digitized database of obturators for edentulous maxillectomy patients.