• Title/Summary/Keyword: Model pile load test

Search Result 184, Processing Time 0.025 seconds

Mock-Up Test for Connection of New-Old Concrete of Footing (확대기초의 신구 콘크리트 접합 모형실험)

  • Hwang, Chul-Sung;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • In general, when an existing pier is enlarged and reinforced using a small diameter pile, bonded anchor with deformed reinforcing bars is used to maintain the integrity of the joint. However, in the case of bonded anchors, the performance depends largely on the type of joint material. Nevertheless, unlike mechanical anchors, there is no standard method for designing appropriate design methods and proper performance evaluation. Therefore, in this study, the performance of the anchoring anchor was evaluated by performing a model experiment using the reinforcing bars and anchor reinforcing bars. Experimental results show that the structural performance of the unbonded specimen is the best, and the failure mode is the punching shear failure. The deflection of the end of the member is smaller than that of the unconnected member, The deflection of the connected member is larger than the deflection of the small connected member. As the load increases, the possibility of slippage of the anchor steel or fold connection rebar is high.

A Study on Behavior Characteristics of Soft Ground by DCM Arrangement Type (DCM 배치 형상에 따른 연약지반 거동 특성에 관한 연구)

  • You, Seung-Kyong;Lee, Jong-Young;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.125-131
    • /
    • 2021
  • This study described the relationship of settlement-lateral displacement and settlement-heaving according to the DCM type using the model test results, in order to evaluate the behavioral characteristics of the soft ground improved with DCM. As a result, it was found that the total settlement of the model ground was relatively small in the soft ground, to which the DCM was applied, and the settlement was less in the order of the grid type, wall type, and pile type under the same load conditions. This trend was also the same for the lateral displacement and heaving. In addition, the relationship between settlement and lateral displacement of soft ground was analyzed to be similar to that of previous study (Leroueil et al., 1990). Therefore, the DCM of grid type was evaluated to be superior to other types for lateral flow and heaving in the improvement effect of soft ground.

A Study on the Behavior of Piled Raft Foundation Using Triaxial Compression Apparatus (삼축압축 시험기를 이용한 말뚝 지지 전면 기초 거동 연구)

  • 이영생;홍승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.387-395
    • /
    • 2003
  • Model tests were conducted to study the behavior of the piled raft foundation system on sands. Especially in this study, the method using the triaxial compression apparatus was devised and used to apply the confining pressure which is considered difficult in the existing model test on the soil. Steel rods (6mm dia.) and aluminum plates (8mm thickness, 50mm dia.) were used to simulate piles and rafts respectively. Jumunjin standard sands were used to ensure the homogeneity of the sample. After the sample with the piled raft model was laid inside the triaxial cell, the confining pressure was applied and then the compressive force was applied. The increase and/or decrease ratio of the bearing capacity, the load distribution ratio between raft and piles and the effect of settlements decrease depending on the confining pressure, the number of piles and the length of piles were analyzed and the bearing capacity and skin friction of the pile was calculated. By the results of these experiments, the bearing capacity increased and the settlement decreased with this piled raft foundation system. Especially the effect was larger with the increase of the number of piles than with the increase of length of piles. Hereafter, the study of the load transfer mechanism of piles under confining pressure would be made possible using these small model tester like triaxial compression apparatus.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.