The aim of this descriptive cross-sectional study was determine the effect of critical thinking and clinical decision-making on ethical dilemmas. A survey of dental hygienists residing in Busan and South Gyeongsang, Korea was conducted using convenience sampling between September and December, 2013. A total of 153 responses were used in the final analysis. Data analysis and structural equation modeling were performed with IBM SPSS Statistics(version 21.0) and AMOS(version 18.0) programs. A negative(-) correlation coefficient(-0.37) was observed between critical thinking and ethical dilemmas on statistical analysis, i.e., higher critical thinking led to less ethical dilemmas(p=0.024, CR=-2.264). The values from the structural equation model were ${\chi}^2=98.124$ df=66, GFI=0.919, AGFI=0.871, and RMSEA=0.057. This study proposed a theoretical model in which critical thinking, ethical values, and decision-making skills should be firmly established to effectively respond to specific situations, such as ethical dilemmas, and that greater tendencies for critical thinking led to less ethical dilemmas, thereby demonstrating a negative(-) correlation between the two parameters.
In this study, we try to understand the role of online social recommendation and the similarity of preferences between the recommender and the recommendee on consumer decisions in the framework of the two stage purchase decision-making process. Applying construal level theory to our context, we expect that the role of social recommendation and the similarity of preferences would vary over the stages in the two-stage decision making process. To test our hypotheses, we collected the data through an incentive compatible experiment, and analyzed the data with nested logit model. As a result, we found that the role of online social recommendation varies over the stages. Consumers take recommendation from similar others at the stage of consideration set formation, but no longer consider it at the stage of final choice. Consumers take recommendation from dissimilar others at the stage of consideration set formation. At the stage of final choice, however, consumers avoid choosing the option recommended by dissimilar others. The results of our study enrich the understanding about the role of social recommendation, and have implication to marketing practitioners who attempt to make online social recommendation system more efficient.
Journal of the Korea Academia-Industrial cooperation Society
/
v.8
no.4
/
pp.894-899
/
2007
IT Outsourcing has been take place for ages and its range has expanded. The cases are also often take place more but there are a few criteria for making decision of IT outsourcing project. Companies tend to take IT outsourcing as a trend or to follow competitor's IT outsourcing project. This study suggests the criteria for IT outsourcing project before going into the project. The criteria ate to describe what function of the companies need to take outsourcing. Research model is driven by Statistics and AHP method. Also, variables are presented for clear making decision. This model allows the companies find proper IT outsourcing type and conveniences.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.3
/
pp.291-296
/
2008
This paper presents the dodecagon-based Q-leaning and SVM algorithm for object search with multiple robots. We organized an experimental environment with several mobile robots, obstacles, and an object. Then we sent the robots to a hallway, where some obstacles were tying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and SVM to enhance the fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process.
The Journal of Asian Finance, Economics and Business
/
v.8
no.1
/
pp.53-59
/
2021
This research aims to examine the model of investor herding behavior in making investment decisions in the Indonesian capital market, which is influenced by social and information impacting on the value of the Book Value Per Share (BVPS). The latest stock market conditions show that most investors make the same error pattern in making investment decisions that result in losses. The experiment involves two independent variables, namely, information about BVPS and social influence. This study used a 2×2 factorial design laboratory experimental method. Data collection was carried out through treatment of a sample of 100 individual investors listed on the Indonesia Stock Exchange. Univariate Two-Way Analysis of Variance (ANOVA) statistical tool was used to test the independent variable on the dependent variable. Research results showed that the social influence originating from expert investors is more influential than the Book Value Per Share (BVPS) information on the behavior of herding investors in making investment decisions. These findings suggest that investors know their psychological factors, thereby increasing self-control and investment analysis skills. Further research can use psychological bias and other indicators of accounting relevant information such as Earning Per Share (EPS) to test herding behavior in investment decision making in the capital market.
Purpose: The main objective of this research is to construct an AI-based Composite Supplementary Index (ACSI) model to achieve accurate predictions of the Composite Index of Business Indicators. By incorporating various economic indicators as independent variables, the ACSI model enables the prediction and analysis of both the leading index (CLI) and coincident index (CCI). Methods: This study proposes an AI-based Composite Supplementary Index (ACSI) model that leverages diverse economic indicators as independent variables to forecast leading and coincident economic indicators. To evaluate the model's performance, advanced machine learning techniques including MLP, RNN, LSTM, and GRU were employed. Furthermore, the study explores the potential of employing deep learning models to train the weights associated with the independent variables that constitute the composite supplementary index. Results: The experimental results demonstrate the superior accuracy of the proposed composite supple- mentary index model in predicting leading and coincident economic indicators. Consequently, this model proves to be highly effective in forecasting economic cycles. Conclusion: In conclusion, the developed AI-based Composite Supplementary Index (ACSI) model successfully predicts the Composite Index of Business Indicators. Apart from its utility in management, economics, and investment domains, this model serves as a valuable indicator supporting policy-making and decision-making processes related to the economy.
Smith, Palmer W.;Phillips, J. Donal;Lucas, William H.
Journal of the Korean Operations Research and Management Science Society
/
v.3
no.1
/
pp.81-91
/
1978
Decision models are an attempt to reduce uncertainty in the decision making process. The models describe the relationships of variables and given proper input data generate solutions to managerial problems. These solutions may not be answers to the problems for one of two reasons. First, the data input into the model may not be consistant with the underlying assumptions of the model being used. Frequently parameters are assumed to be deterministic when in fact they are probabilistic in nature. The second failure is that often the decision maker recognizes that the data available are not appropriate for the model being used and begins to collect the required data. By the time these data has been compiled the solution is no longer an answer to the problem. This relates to the timeliness of decision making. The authors point out throught the use of an illustrative problem that stocastic models are well developed and that they do not suffer from any lack of mathematical exactiness. The primary problem is that generally accepted procedures for data generation are historical in nature and not relevant for probabilistic decision models. The authors advocate that management information system designers and accountants must become more familiar with these decision models and the input data required for their effective implementation. This will provide these professionals with the background necessary to generate data in a form that makes it relevant and timely for the decision making process.
Journal of the Korean Operations Research and Management Science Society
/
v.39
no.3
/
pp.23-40
/
2014
This paper measures the operational efficiency of domestic online game companies and analyze its trends and patterns by using data envelopment analysis (DEA). DEA is a non-parametric approach to measuring the relative efficiency of decision-making units (DMUs) with multiple inputs and outputs. 14 online game companies are selected as DMUs and three inputs (number of employees, capital and asset) and three outputs (sales, operating profit and net profit) are selected as DEA variables. First, the output-oriented BCC model and super-efficiency model are employed to measure the static operational efficiency of the online game companies from 2003 to 2012. We also conduct the dynamic analysis with DEA window model to capture the trends of their operational efficiency influenced by internal and external environmental changes. The results are expected to provide fruitful implications for strategic decision making of online game companies and policy making for the online game industry.
Journal of Information Technology Applications and Management
/
v.19
no.3
/
pp.49-68
/
2012
M&A (Merger and Acquisitions) is a standard corporate strategy frequently used by companies seeking to secure new growth engines and gain a solid foothold in their markets in order to become more globally competitive. To achieve the original goals of M&A, the two involved parties need to invest significant time and resources in integrating all aspects of the companies. A well-planned post-merger integration of information technology (IT PMI) by the two M&A parties is considered a crucial and difficult process because IT provides a fundamental infrastructure for integration. Considering various internal and external factors, the two parties normally formulate an IT PMI strategy. The many IT PMI strategies can be categorized into four major types: Renewal, Takeover, Standardization, and Synchronization. This study aims to develop a decision making model to help merger company and IT managers select the proper IT PMI strategy. More specifically, we identify key determinants that need to be considered when selecting a proper IT PMI strategy. The relative importance of each determinant is defined by analytic hierarchy process (AHP) analysis. Finally, this study evaluates each IT integration strategy under the identified determinants.
Journal of The Korean Association For Science Education
/
v.32
no.8
/
pp.1281-1294
/
2012
This paper describes the types of models that biology majors use and how they go about making their models in learning key concepts in biology such as the cell membrane, cytoskeleton and cell structure. Initially, a total of 44 biology students from all year levels enrolled in the second semester of calendar year 2008-2009 were asked to make their respective models of the cell membrane, cytoskeleton and cell structure. They were also asked to answer an open-ended questionnaire. Of the 44, only 20 (five from each year level) were randomly selected for a one-on-one interview. Results showed that the student-generated models from all year levels were mostly analogies, some textbook definitions and occasional drawings. In making their model, students first read the text; second, outline similarities in structure and function or both; and third, make the model. Data suggest that models are good diagnostic tools for identifying critical thinking skills of students. In this case, students mostly demonstrate the ability to recognize similarities in structure and function between the concept and their model. Some senior students demonstrated integration and reflective thinking in making their models. Thus, more opportunities for student-generated models must be available if students were to develop integration and reflective thinking in their models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.