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Abstract

Decision models are an attempt to reduce uncertainty in the decision making
process. The models describe the relationships of variables and given proper input
data generate solutions to managerial problems. These solutions may not be answers
to the problems for one of two reasons. First, the data input into the model may
not be consistant with the underlying assumptions of the model being used. Fre-
quently parameters are assumed to be deterministic when in fact they are probabilistic
in nature. The second failure is that often the decision maker recognizes that the
data available are not appropriate for the model being used and begins to collect
the required data. By the time these data has been compiled the solution is no
longer an answer to the problem. This relates to the timeliness of decision making.

The authors point out through the use of an illustrative problem that stocastic
models are well developed and that they do not suffer from any lack of mathematical
exactiness. The primary problem is that generally accepted procedures for data
generation are historical in nature and not relevant for probabilistic decision models.
The authors advocate that management information system designers and accountants
must become more familiar with these decision models and the input data required
for their effective implementation. This will provide these professionals with the
background necessary to generate data in a form that makes it relevant and timely

for the decision making process.

1. Introduction

There is little doubt that the rapid growth in the use of operations research methods in managerial
decision making has been the impetus for redefining the body of knowledge for management
information systems. Over a decade ago, R.M. Trueblood recognized the impact of operations research
on auditiong, inventory management, and forecasting. New decision models under development and
those of the future will require infoimation which is not a part of the traditional information system
(11, pp.47~49).

In 1969, the American Accounting Association Committee on Managerial Decision Models was
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formed for the purpose of recommending new methods of preparing and reporting financial inform-
ation needed to implement decision models. The Committee’s report states that if the management
information system (MIS) does not consider the assumptions of the models, erroneous or irrelevant
data might be furnished the management scientist. In his article Why Should the Management
Scientist Grapple with Information Systems (13, pp. 1~14], Andrew Vazsonyi argues that the use
of decision models without regard to the data input into the model may provide solutions that are not
answers to the problems at hand. Vazsonyi argues for a data based information which supports the
managerial decision making process. Thus, the need to obtain an adejuate understanding of decision
models is critical in designing and implems=nting management information systems (1, p.44]. C.T.

Horngren expands upon this thought in stating that the entire decision process must be known to
design the best information system (3. p.777].

Management information systems play a critical role in obtaining maximum benefit from decision
models. Without relevant and meaningful data available as input, the maxim, “garbage-in equals
garbage-out,” holds true for the simplest or most sophisticated decision model. Continuing increases
in the complexity and use of decision models have generated a demand for more information as
well as information of a different nature and form. This growth will bring about new demands on
the resourcefulness and ingenuity of MIS designers to provide needed data. This paper explores two
areas of concern: one, data rejuirements for one type of decision model and two, a demonstration of

how these data may enhance the usefulness of the decision model through the incorporation of risk.
2. Decislon Models and Realistic Assumptions

The manager’s raison detre is to make decisions and managerial success is measured to a large
degree by the number of “correct” decisions made. These decisions include sales forecasting, product
distribution, selection of warehouse locations, inventory policies, capacity allocations, portfolio
selections, lease or buy decisions, new capital expenditures and product mixes. Stated simply, the
problem in making the right decision involves collecting and examining an almost infinite volume
of information, developing alternative courses of action and then selecting and implementing the
“best” alternative, compatible with other decisions made within the firm. Many of these decisions
are characterized by complexity, conflict and uncertainty. Decision models help to reduce uncertainty
by increasing the knowledge available to the decision maker. Decision models have become a prime
tool for determining the interactions between pertinent variables, for quantifying these interactions,
and determining their effect on resulting solutions.

Often unrealistic assumptions of certainty have to be made to obtain explicity solutions. The
importance of understanding these assumptions cannot be overemphasized when making value judge-
ments about solutions and the weight that should be given each alternative in making a decision.
These decision models are by no means a cure-all for decision making, but they are a means of
reducing uncertainty.

Economic order quantity models, the transportation model and the now famous linear programming
model are examples of models in wide use today which require that input data be known with
certainty. This assumption of perfect knowledge can produce a misleading solution, which, if not

viewed with reservations, may have undesirable results. Generally speaking, there are few optimal
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solutions available in actual situations, or better stated, “Never forget—a solution is not necessarily
an answer” (13, p.5..

Common practices, in the face of uncertainty, include providing plenty of fat during the formul-
ation of deterministic models such as those named above. This provides a contingency for unseen
events or replaces random variables with an anticipated value based on experience (6, p.487). In
addition to this practice, managers usually conduct sensitivity analyses to determine the possible
consequences of a variable taking on a value within specified limits (9, pp. 441~56].

While the above do provide a cushion against the unknown, they do not allow the direct incorpor-
ation of risk into the decision model. The inclusion of risk is a relaxation of the certainty assumptions
and increases the reality a model depicts. The cost of additional reality is the geometric growth in
the complexity of the model. This increase in complexity may be illustrated by showing the

incorporation of risk into the general linear programming problem. Consider the classical formulation:

MAX or MIN Z=CX (1.1}
Subject to AX<$ and, 1.2)
X>0 (1.3)

where

C is a row vector with N elements that are known constants
X is acolumn vector with N elements

A is a M x N matrix of constants

b is a column vector with M elements that are known constants

0 is a column vector with N elements that are zero

The mathematical expressions (1.1) through (1.3) are read as follows: Find non-negative values
tor the elements of X which maximize or minimize (1.1) and satisfy the constraints of (1.2). The
elements of C are costs or profit contributions, the elements of # are measurements of anticipated
demand or resources and the elements of A are called technological coefficients which may, for
example, relate the production of goods to available resources or more basically may comprise the
recipe for the product. The elements of A, & and C are treated as known constants in the general
linear programming problem. Since future demand, resources for mext year, costs, and profits are
random variables, using this model may result in inaccurate conclusions becaus of the chance variation
of these elements.

Now consider a stocttstic linear programming model, one which incorporates risk by treating the
vectors A, b and C of the general model as random!’ rather than constant vectors. One such model
is called the chance constrained programming model. It is formulated as follows:

MAX or MIN Z=f(C, X) (2.1
Subject to P(AX<b)>a (2.2)

where one or more of the elements of A, & and C are now random variables, “P” means probability,
and @ is a vector whose elements are constants between zero and one, representing risk. Each
constraint has a probability>(1~a) of being violated, which says, for example, that a decision
maler accepts a percent risk that production will not satisfy demand. In general, the problem is to
find the “best” nonnegative values of X, the vector of decision variables, which satisfy most of the
constraints of equation (2.2).
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To date there exists no adequate solution for this general model which depicts greater reality by
treating one or all elements as random variables. However, progress has been made to the extent
that solutions can be found for certain cases. The move toward reality then is not lost in its
entirety. The approach generally used to solve any stochastic programming problem is to first select
a decision rule and some rational objective such as expected value optimization. Then, with certain
assumptions, a deterministic equivalent is derived in which there exists no random variables. If this
deterministic equivalent is linear in all respects and can be formulated as a linear programming
problem, the powerful simplex algorithm may be used to generate a solution.

One type of objective that allows the transformation of a chance constrained programming problem
to a suitable deterministic equivalent is the optimization of the expected value of a linear objective

function subject to a class of linear decision rules. This is the so-called ‘E-Model’ (2, p.25]:

Maximize E(Z)=E(CX) G.D
Subject to P(AX<b)=a (3.2)
and X=Db (3.3)

where A, &, C and X are defined as in expressions (2.1) and (2,2), E is the expected value
operator and D is an Nx M matrix. Fguation (3.3) is the linear decision rule where the elements
of D are to be determined with reference to a model such as defined by equations (2. 1) and (2.2).
The decision variables in X are related to the random variable of & by the elements of D. Thus,
the vector X consists of random variables.

Assuming that the elements of & and C are normally distributed random variables and are
uncorrelated, that the a are greater than one-half,?’ and that the elements of A are constants, the
resulting deterministic equivalent for (3.1)—(3.3) is developed by Charnes and Cooper (2, p.28]

and appears as follows:

Minimize — gDy €Y
Subject to v;=0 =1, - , M 4.2)
(D) =020 4.3
— K i0;(D) + Kouptt (D) +0%20 4.9
where a,(D)=E(a;Db—b;)* (4.3
and p2: (D)=, —aiDpy)? (4.6)

The g, and p, are expected values of the elements of & and C; the z,’s are new variabies (to
be treated as slack variables) introduced to create a convex programming problem. The a*’s are
the variances defined by (4.5) 5 the a;’s are the i** row of the matrix Aj; and the K,,’s are the
upper a; percentage points (the normal deviate) corresponding to «;.

The mathematical program defined by equations (4.1)—(4.4) is a deterministic programming
problem where the values of all variables except D are known, and thc random variables are
related through the estimated mean and variance of their distribution functions.® The increase in

complexity over the linear programming problem defined by (1.1)—(1.3) is apparent.

3. Management Information Systems’ For Probabilistic Models

The use of stochastic programming models, as is true for all models, depends upon the availability

of data. Decision models such as the above example are not being used because of the inability to
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obtain real time solutions from the models and/or the inaccessability of data. Obtaining real time
solutions is essentially a function of the availability of data in the form needed for the models. This
leads to the conclusion that both the use and value of either deterministic or stochastic models pivot
on the data element of the decision process. Without having found a solution to this problem, more
sophisticated models are continually being developed which require further innovative refinements in
the information system. Given both the concept of a data based information system and access to
computerized information systems for extracting and manipulating data; there still remains the
essential question of identifying basic data elements and their formulation.

Traditionally, the accountant is the source of financial data. And he is largely responsible for
collecting, formating, processing, and analyzing data to be utilized in the decision process. These
traditional accounting procedures and practices of data generation are not attuned to providing data
for decision models and especially those which include probabilistic concepts utilized in stochastic
programming models. Many MIS designers have begun to recognize the need for altering these
practices and procedures in light of the demands of decision models. To date these changes have been
directed toward satisfying the needs of that group of models known as deterministic decision models.
Given the inputs, these models can produce an opaimum solution to the problem at hand.

The perfect knowledge assumption of deterministic models is bold and often a misrepresentation
of the real world. Some decision theorists argue, quite correctly, that the perfect knowledge
assumption provides a means of getting at the problem and that a solution based on the assumption
is at least a starting point. The more nearly the certainty assumption is to the actual situation the
better the solution. Also, this is often better than making no attempt to quantify the problem.

Whiie these arguments may be true, there are models which do not depend on certainty assumptions
and if data were available could be employed in the decision process. The proper consideration of
uncertainty in the decision making process is of utmost importance. Incorporating risks into the
decision model is an attempt to accomplish this task. Utilization of probabilistic models rejuires
that data be available in usable form. This means that the MIS manager must begin to collect data
and formulate distributions which depict the nature of costs, revenues, expenditures, performances,

sales, and pertinent information areas.

4. The Product Mix Case

To lilustrate that probabilistic data supplied by the accountant are of significant value and that
stochastic programming models, which require these data as inputs, can increase the effectiveness
of the decision maker, consider the following simple example. A small manufacturing firm produces
only two products for which demand exceeds supply. The firm's management has been able to
expand existing facilities and increase production but not to a point where demand is completely
satisfied. The current problem facing management is to determine the production mix which will
maximize the total contribution to overhead and profit subject to the new production capacity. The

following data are provided. )

Product

X X,
Selling Price $60 $45
Variable Cost 30 24
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Pre-Unit Contribution to Overhead and Profit 830 S21
Number of Hours Needed to Produce One Unit
Machine M 10 6
Machine N 5 4
Total Machine Hours Available
Machine M 10, 000
Machine N 6, 000

The following linear program may be constructed from the data. Let X, and X, replesent the

number of units of their respective products to be produced.

Maximize Profit Contribution= $ 30X, + $21X, (5.1)
Subject to 10X, + 6X,=<10, 000

5X, +4X;=6, 000 (5.2)

X, X2>0 (5.3)

After solving this problem, management’s decision was to produce 400 units of Product .Y, and
1,000 units of Product X, with a resulting profit contribution of $33,000. Management noted,
however, that these values may be subject to variation.

Further analysis of the problem revealed that the process times, profit contributions and machine
hours available were based upon forecasts, experiences, judgements and historical data. These
values are not constant nor known with certainty. Management then asked if the problem
could be solved by treating these values as random variables to in corporate uncertainty and
increase the reality of the firm’s decision model.

The firm’s information system manager, using historical data and working closely with decision
analysts, was able to determine that the M and N machine hour availability could be approximated
by normal distributions with means of 10, 000 and 6,000 hours and variances of 6,400 and 3, 600
hours respectively. Likewise, the profit contributions of products X, and X, were found to be
distributed normally with means of $30 and $21 and variance of $4 and S2, respectively. Because
machines M and N were operated by computers, the number of hours required to process each
product was found to have such a small variance that this variable could be treated as a constant
with no loss in reality. The analysts decided to reformulate the program as a chance constrained
program. In considering inventory requirements and the possible consequences of drastic variations in
the number of machine hours available during each period, the analysts were able to obtain
agreement from management that the production mix should be such that the probability of
violating machine capacity constraints will not exceed approximately 2.3 percent. The analysts

working within the information system constructed the following revised data table.

Product
X, X,
Profit Contribution ' N(30,4) N(21,2)
Number of Hours Required to Produce One Unit
Machine M 10
Machine N 5

Total Machine Hours Available
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N(10000, 6400)

Machine M
N(6000, 3600)

Machine N
Covariance Cov(M, N)=4800
From the risk factor agreed upon, the revised data table and the ‘E-Model formulation of
equations (3.1)—(3.3), the chance constrained program is:
Maximize E(Z)=E[30X,-+21X,) (6.1)
Subject to  P(10X, +6X,=<10000)>0. 977
(6.2)

P(5X,+4X,=<6000)>0. 977
and
X=Db (6.3)
To solve the program of (6.1)—(6.3) it is necessary to transform it into a deterministic
equivalent of the form (4.1)~(4.4). For the objective function (6.1). expanding and substituting

into (4.1) gives:
d, d ‘
(;uc ) ,zm) " 2 </ bl =
1 [dm dszI ﬂb)
dyy d 10000\ _
(30,21 [d; d;ﬂ ( eooo>“

(30d1, +21d2), (30d),+21d,,) 1000 _
6000
(7.1)

\

Maximize 300000¢;; -- 210000d 5 -+ 180000d; , -+ 126000755
For the constraints (6.2). First, using (4. 6) and expanding gives

Aul(D>=(‘Uiu—01Dﬂb)
_ o dyy dyy <10000)‘
=10000— 1(10,6) [d21 dzz] 6000 J

=10000— (10000004, + 60000d 5; + 600004, 4+ 360004 5,)
12D = g1y — a,Duy)

=600~ (5, )[gn ] (10000)|

= 6000 — 500004, + 400004 5, + 30000, + 24000d ;,)
Then, rearranging and substituting into (4. 3) gives:
10000041, + 600004 21 -+ 60000 + 36000 22 + 2, < 10000
500004, + 400004, + 30000d,, -+ 240004 55 + 2,=<6000

V)
—

~
o |

W o
~

Secondly, expanding (4.5) and substituting for the a; values gives

&, (D)=E(~b; + a;Db)?
& (D)= E(~b,+a,Db)?
—El_p dy dy, éll 2}

E |-+ (10, 6)[% dzz]bz

= E(—b,+ (10d11+ 64508, + (10d,, + 6d32)5,)?

= E(5:(10d1 + 6d2 — 1) + 6,(10d 5+ 643 )*
Further expansion and taking the expected value gives:

G1(D) = 0%, (10411-+ 6y ~1)*+ 0%, (10d,3 + 63"
+20(8,, 03)041 95, (lodn + 62 —1)(10,,+ 6d,,)
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_ Cov(by, b)) _ 4800
b b= =, T (80)(60)

regrouping gives the following:
&zx(D):(O'bl (105111'%'64121‘1)'*1’ sz(lodlzﬁ“ 6d32))°
Using the same procedure, it follows that:
&EZCD)=(0'b1(d1ﬁ ddy) Os, (5dyz+4d32—1))?
The constraint in (4.4) becomes:
v = K247 (D) =48%(D)
Taking the positive square root of (7.6) using (7.4) and (7.5) and the values for a; and s,

=1, therefore
1

the last two constraints of the deterministic equivalent are written as:
1600d 11+ 960, + 1200d 1, + 720d 2, — 1 =160 (7.4a)
&00d,, +~ 640d 5+ 600d15+ 480d 22 — =120 (7.5a)
Rearranging and collecting equations (4. 2, (7.1), (7.2, (7.3, (7.4a) and (7.5a), the
deterministic equivalent program becomes:
Maximize 300000d:; - 180000d;; +210000d > + 126000,
Subject to
1000004, + 6000042 + 60000d 51 + 360002 + 2, =10000
50000d1; - 3000042 - 400004 21 + 240004 2, -+ v, = 6000
1600d,,+ 1200d,,- 960ds +  720d—ui= 160
800d, + 600d;,- 640d,+  480dp—v,= 120 .1
v1, U220
Using the simplex algorithm, an optimum solution to the deterministic ejuivalent in (8.1) is
d 1, =1/25, d%,=0, d'3=1/10 and d*;,=0. For the optimal policy, the expected values of X
and X, can be found by using this solution and the linear decision rule given by (6.3), X=Db.
E(X)=E(Db)=DE(b)

eco =[5 5] CH)

E(X,)=400 units
E(X,)=1000 units

The variance of X; and X, are given by:
Var(X)=D Var(b)
varco=[1/3%: 0](500) = (&0)

The respective variance of X, and X, are 256 and 640 and X; is N(400,256) and X, is N(1000,
640).

Though the optimal solution to the stochastic program is not the answer, it is valuable because
the unceriainties or profit margins and available machine time have been transformed into estimated
variances for the production mix. Improved information is now available and should be used in
conjunction with other economic, social and behavioral data so that more knowledgeable decisions may
be made by the firm. For example, these results may be useful in managing inventories of the raw

materials required to produce products X; and X, *
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model assumptions. For a full appreciation of this phenomenon, one need only recall that several

assumptions were made for this presentation.
5. Probabilistic Information Systems and New Decision Horizons

Stochastic programming methods may be used for increasing reality in other major areas of the
decision process. Consider, for example, the capital budgeting problem. Deterministic models such
as linear, integer and dynamic programming models have been used to assist managers in selecting
an alternative from a set of mutually exclusive projects (7, p.21] or in selecting an optimum set
of proposals froma large number of alternatives, given that certain resources are fixed [12, pp.552
~61]J. Howeve, in each case the cash inflows of each period and, thus, the net present value of a
project or proposal is considered constant and known. William H. Jean, in his two recent texts
(4] (5], presents excellent discussions on techniques which incorporate chance variation into capital
budgeting decisions. His presentations illustrate the use of expected valnes and variances to determine
the expected net present value and its variance for the selection of various investment proposals.
However, Jean's presentation assumes that the expected value and variance of the cash inflow at
each time period is known with certainty.

Another illustration is Bertil Nislund’s use of the chance constrained programming model for finding
an approximate solution to a capital budgeting problem under risk (8]. Nislund treats the & and
C vectors of the problem on page 5 as constants but allows the elements of the matrix A to be
random variables. His deterministic equivalent is quadratic in the constraints rather than linear and
the formulation requires approximation techniques in the solution process.

The application for stochastic models in the decision process are numerous but there are stumbling
blocks which must be overcome in the application of these models. For example, Jean discusses the
excessive use of the normality assumpiton [5, pp.115~117]. He points out that this assumption
may be totally inappropriate for cash flow in a given period. The assumption for the most part is
made for two reasons: (1) to allow simplification of the model so that it may be solved, and (2)
simply because of the nonavailability of data or the excessive cost of massaging historical data so
that it is usable in probabilistic decision models.

Given that relevant data are available and in usable form, another weakness of stochastic models
is the requirement of management input in the form of risk decisions, such as selecting an « in the
example problem. While decision makers indirectly and consistently think in terms of and make
decisions utilizing probability concepts, they are hesitant to commit this process to numbers. Clearly,
the education of managers with respect to the usefulness of stochastic programming solutions as
aids in the decision making process is an area of concern in future management education [10,
p- 140~41].

Having provided reasons for disillusionment regarding the use of stochastic programming models,
it is apropos to try and answer the question, why bother? First, the potential payoff of the
additional information provided by these models may prove to be very valuable for long-run one-time
decisions involving large capital expenditures. Information which reduces uncertainty should be
welcomed by decision makers. Secondly, and probably the more important reason for advocating

the use of these models is that decisions are going to have to be made with or without this additional
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This example demonstrates the additional complexity which accompanies the relaying of decision

information and managerial effectiveness is improved through the use of these models.
6. Conclusions

Because of the expanding role of MIS in all decision processes, it is quite clear that MIS
designers must be acquainted with the available decision tools. They must know the capabilities
and limitations and must temper decisions with experience and subjective judgements about the
intangibles which defy quantification.

But, even more important is the role of MIS in the decision science. This role is one of expanding
research into methods of data cellection, manipulating and formating decision models and, in
particular, stochastic models. Decisions will have to be made cencerning the trade-off between the
cost of obaining and storing data versus the benefits of more effective management through the
utilization of advanced decision models. This involves an insight into the “risk” involved in consi-
dering solutions to nonstchastic problems. The MIS designer’s knowledge and experience is
indispensable in the development of the system. Because data collection and storage can be, and
should be, treated as an inventory cost, the efficiency of the design and use of the information
system is a major consideration. Only in this way might it be practical to query and search a large
data base for the purpose of developing probability distributions for variables used in models.

The need for the personal involvement of MIS designers and managers in recognizing and defining
the future data requirements for advance decision models is clear to the authors. Of no less
importance is the assistance that the MIS managers may provide in the education of managers.
Hopefully, however, because of the current trend of exposing potential managers to decision models
and operations research in our universities this problem will be somewhat alleviated in the future.

Stochastic programming models promise to provide future mangement with information for the
decision process that is not now available. While the misuse of these programming techniques or a
belief that they are the answer to eliminating uncertainty can be and usually is disastrous, it may
be equally disastrous to dismiss almost thirty years of research because of a lack of knowledge,
denial that such a tool exists, or the fear of using the results of the models. The incorporation of
risk into decision models is a relatively new concept with much to be accomplished before it is
accepted and used to maximum advantage. The challenging role of MIS is clear-develop a system

that is supportive of the developing decision models.

1) A random vector is ane which contains ene ¢r more random variables as elements.

2) This assumption is not unrealistic because if it is permissible for a constraint to be violated more than
than fifty percent of the time, then it probably should not be considered a constraint in the problem.

3) Note that this transformation has a corresponding dual solution. The duality relationships may be used
to investigate the sensitivity of any decision vector X chosen to the risk factors, the a;, and the variability
of the vectors C and & before their values become known in the future.

4) There are other obvious advantages to having such data available. The reader might also recognize that
the dual for the deterministic equivalent canbe written and various levels of risk, the «;, can be examined
for their impact on the optimal policy, X.

5) As mentioned previously, chance constrained programming is only one of several stochastic programming
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models. And the ‘E Model’ is only one of three types of optimizing objectives. See Charnes and Cooper
for a presentation of the ‘V Model’ objective, minimizing a generalized mean square error, and the ‘P
Model’ objective, a satisficing approach. Also, see Hellier for a presentation on bounded or 0-1 decision

variables in chance constrained programming.
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