• 제목/요약/키워드: Model equations

검색결과 5,765건 처리시간 0.03초

축류송풍기의 삼차원 유동장 해석 (Three-dimensional analysis of the flow through an axial-flow fan)

  • 김광용;김정엽;정덕수
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.541-550
    • /
    • 1997
  • Computational and experimental investigations on the three-dimensional flowfield through an automotive cooling fan are carried out in this work. Steady, incompressible, three-dimensional, turbulent flow through a rotating axial-flow fan is analyzed with Reynolds averaged Navier-Stokes equations and standard k-.epsilon. turbulence model. The governing equations are discretized with finite-volume approximations in non-orthogonal curvilinear coordinates. Computational static pressures on the casing wall agree well with the experimental data which are measured in this work. And, they are sensitive to the change of tip clearance. The flowfield is not significantly affected by the thickness of the blade. The k-.omega. model gives the static pressure rise on the casing wall which is similar to that with the k-.epsilon. model.

Numerical Analysis of an Arc Plasma in a DC Electric Furnace

  • Lee, Yeon-Won;Lee, Jong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1251-1257
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid flow in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism onto account, that is radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, that are conservation equations of mass, momentum and energy together with the equations describing a standard k-${\varepsilon}$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. From these results, it can be concluded that higher arc current and longer arc length give high heat transfer

SPH를 이용한 봉충돌 해석에서 구성방정식의 특성 (Characteristics of Constitutive Equations under Rod Impact Analysis by Smoothed Particle Hydrodynamics)

  • 김용환;김용석;이정민
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.62-73
    • /
    • 2003
  • The characteristics of constitutive equations, for hydrocodes, were Investigated by the comparison between the smoothed particle hydrodynamcis simulation and the experiment of rod impact test which resulted in a deformation history of impacting front where high strain and high strain rate dominate. The constitutive equations used in the simulation Is J-C(Johnson-Cook) model, Z-A(Zerilli-Armstrong) model, and S-C-G(Steinberg-Cochran-Guinan) model. The modification of Z-A model, based on the increased effect of strain-rate hardening, showed better correlation with expriment.

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction

  • Song, Myung-Kwan;Fujino, Yozo
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.355-380
    • /
    • 2008
  • In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring model. By Lagrange's equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge interaction, the complete system matrices of Maglev train-guideway structure system are composed.

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

Modelling and numerical simulation of concrete structures subject to high temperatures

  • Ostermann, Lars;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.73-88
    • /
    • 2014
  • The paper deals with a model founded on the physical processes in concrete subject to high temperatures. The model is developed in the framework of continuum damage mechanics and the theory of porous media and is demonstrated on selected structures. The model comprises balance equations for heat transfer, mass transfer of water and vapour, for linear momentum and for reaction. The balance equations are completed by constitutive equations considering the special behaviour of concrete at high temperatures. Furthermore, the limitation and decline of admissible stresses is achieved by using a composed, temperature depending crack surface with a formulation for the damage evolution. Finally, the complete coupled model is applied to several structures and to different concrete in order to determine their influence on the high-temperature-behaviour.

Analysis of thermo-rheologically complex structures with geometrical nonlinearity

  • Mahmoud, Fatin F.;El-Shafei, Ahmed G.;Attia, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.27-44
    • /
    • 2013
  • A finite element computational procedure for the accurate analysis of quasistatic thermorheological complex structures response is developed. The geometrical nonlinearity, arising from large displacements and rotations (but small strains), is accounted for by the total Lagrangian description of motion. The Schapery's nonlinear single-integral viscoelastic constitutive model is modified for a time-stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are incrementalized leading to a recursive relationship and thereby the resulting finite element equations necessitate data storage from the previous time step only, and not the entire deformation history. The Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite element equations. The developed numerical model is verified with the previously published works and a good agreement with them is found. The applicability of the developed model is demonstrated by analyzing two examples with different thermal/mechanical loading histories.

Simulation of Turbulent Flow and Surface Wave Fields around Series 60 $C_B$=0.6 Ship Model

  • Kim, Hyoung-Tae;Kim, Jung-Joong
    • Journal of Ship and Ocean Technology
    • /
    • 제5권1호
    • /
    • pp.38-54
    • /
    • 2001
  • A finite difference method for calculating turbulent flow and surface wave fields around a ship model is evaluated through the comparison with the experimental data of a Series 60 $C_B$=0.6 ship model. The method solves the Reynolds-averaged Navior-Stokes Equations using the non-staggered grid system, the four-stage Runge-Kutta scheme for the temporal integration of governing equations and the Bladwin-Lomax model for the turbulence closure. The free surface waves are captured by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and free-surface conforming grids are generated at each time step so that one of the grid surfaces coincides always with the free surface. The computational results show an overall close agreement with the experimental data and verify that the present method can simulate well the turbulent boundary layers and wakes as well as the free-surface waves.

  • PDF

The application of model equations to Non-Fickian diffusion observed in Fluoropolymers

  • Lee, Sangwha
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 춘계 총회 및 학술발표회
    • /
    • pp.34-35
    • /
    • 1996
  • The diffusional behavior of many non-solvents in glassy or semicrystalline polymers cannot be adequately described by a concentration-dependent form of Fick's law, especially when mass transfer is coupled with structural changes. Many mathematical models have been devised to interprete non-Fickian diffusion dominated by relaxation kinetics. In formulation of non-Fickian diffusion mathematics, therefore, the most important factor to consider is how relaxation effects can influence the governing constitutive equation and boundary conditions. That is, relaxation parameters can be accommodated by variable boundary conditions or a modified continuity equation, or both, depending on specific systems and conditions (Frish, 1980). Accoring to Astarita and Nicolais (1983), the model equations can be broadly categorized as continuous or discontinuous. Continuous model equations encompass phenomena where the structural change takes place gradually over the whole volume of the polymer sample (Crank, 1953; Long and Richman, 1961; Berens and Hopfenberg, 1978). On the other hand, discontinuous model equations deal with the phenomena where the morphological change appears to be abrupt (Li, 1984). Four mathematical models with different relaxation parameters were applied to fit the anomalous sorption data observed in fluoropolymers (PVDF, ECTFE). The fitted result for PVDF-benzene sorption data is shown in Fig. 1.

  • PDF

Coupled diffusion of multi-component chemicals in non-saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Xi, Yunping
    • Computers and Concrete
    • /
    • 제11권3호
    • /
    • pp.201-222
    • /
    • 2013
  • A comprehensive simulation model for the transport process of fully coupled moisture and multi-species in non-saturated concrete structures is proposed. The governing equations of moisture and ion diffusion are formulated based on Fick's law and the Nernst-Planck equation, respectively. The governing equations are modified by explicitly including the coupling terms corresponding to the coupled mechanisms. The ionic interaction-induced electrostatic potential is described by electroneutrality condition. The model takes into account the two-way coupled effect of moisture diffusion and ion transport in concrete. The coupling parameters are evaluated based on the available experimental data and incorporated in the governing equations. Differing from previous researches, the material parameters related to moisture diffusion and ion transport in concrete are considered not to be constant numbers and characterized by the material models that account for the concrete mix design parameters and age of concrete. Then, the material models are included in the numerical analysis and the governing equations are solved by using finite element method. The numerical results obtained from the present model agree very well with available test data. Thus, the model can predict satisfactorily the ingress of deicing salts into non-saturated concrete.