• Title/Summary/Keyword: Model dust

Search Result 453, Processing Time 0.026 seconds

PROPERTIES OF DUST IN EARLY-TYPE GALAXIES BASED ON THE ALL-SKY-SURVEY DATA AND NEAR-INFRARED SPECTRA

  • Mori, T.;Oyabu, S.;Kaneda, H.;Ishihara, D.;Yamagishi, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.263-264
    • /
    • 2012
  • We present the properties of dust and the near-infrared spectral features in nearby early-type galaxies. The properties of dust are obtained from the AKARI far-infrared all-sky survey diffuse map. The AKARI/IRC is used for the near-infrared spectra. We improve spectral data with the new dark subtraction method on the basis of the knowledge acquired in our laboratory experiments of the engineering-model detector for the IRC. We have succeeded in fitting the continuum by a power-law function and detecting CO and SiO absorption features in early-type galaxy spectra. Comparing the properties of dust and near-infrared spectral features, we find that the power-law slope depends on dust temperature, but not on the dust mass, which suggests that low-luminosity AGNs may contribute to the changes in the power-law slope and dust temperature.

Intelligent Dust Chamber Bag Control System using Case-Based Reasoning (사례기반 추론을 이용한 지능형 집진기 bag 제어 시스템)

  • Kim, Jung-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • In this paper, we develop the intelligent remote dust chamber bag control system which is combination of the advanced IT and traditional dust chamber based on event. At first, the message format is defined for the efficient dust chamber bag information transmission using power line communication. Also, we define the data types to logically model the dust chamber and the dust chamber bag, and they are logically modeled using XML and object-oriented modeling method. In addition to, we apply the case-based reasoning for showing the dust chamber bag exchange time intelligently to user at real-time using casebase, that is collected by case or case-based reasoning result, and that is described using XML.

Variation of Collection Efficiency with Turbulence Model in a Mini Cyclone for Collecting Automobile Brake Fine Dust (자동차 브레이크 미세먼지 포집을 위한 미니 사이클론의 난류모델에 따른 포집효율 변화)

  • Han, Dong-Yeon;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.47-52
    • /
    • 2021
  • Fine dust generated from vehicle brakes accounts for a significant amount of fine dust from non-exhaust system. Since such brake fine dust contains a large number of heavy metal components that are fatal to the human body, a device capable of collecting them needs to be developed. A mini cyclone, one of the devices that can effectively collect fine dust, has the advantage of relatively simple shape and high collection efficiency. Therefore, in this study, the collection efficiency of the mini-cyclone was numerically analyzed using CFD in order to find out whether such a mini-cyclone is suitable for collecting brake fine dust. As a result, the cut-off diameter was predicted to be about 1.5㎛, which means that the particle trapping load of the filter can be drastically reduced. Therefore, there is a possibility that the mini-cyclone can be used to collect fine dust from disc brakes.

Source Apportionment and the Origin of Asian Dust Observed in Korea by Receptor Modelling (CMB) (수용모델(CMB)을 이용한 한반도에서 관측된 황사의 발원지 추정과 기여도에 대한 연구)

  • Shin S.A.;Han J.S.;Kim S.D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.157-166
    • /
    • 2006
  • Ambient TSP at four sites in Korea and soil samples from the source regions of Asian Dust in northern China were collected and analyzed for 15 metal components and 6 water-soluble ions to conduct a chemical mass balance (CMB). CMB receptor model was used to estimate the source contribution of TSP during the Asian Dust period, and the model results showed that China soil was the largest source contributor, accounting for 81% of TSP ($458.2{\mu}g/m^3$). Vehicle emission and geological sources contributed to about 8.8% and 4.4% of aerosol mass, followed by sea salt (1.5%) and secondary aerosol (2.9%). Fuel combustion and industrial process sources were found to be relatively minor contributors to TSP (${\leq}1%$). In addition to source contribution estimates, this study tried to identify the origin of Asian Dust observed in Korea. Among all 13 China soil profiles presented in this study, the most adoptable profile which can project the case well was selected and considered as the origin of the applied case.

The Extraction of Manganese from the Medium-Low Carbon Ferromanganese Dust with Nitric Acid (질산에 의한 중.저탄소페로망간제조분진에 함유된 망간의 침출)

  • 이계승;한기천;송영준;신강호;조동성
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • Extraction of manganese was investigated with nitric acid from the dust which was generated in the AOD process producing a medium-low carbon ferromanganese from a high carbon ferromanganese. Content of manganese oxide in the dust was about 90%, and phase of it was confirmed as $Mn_3O_4$, The $Mn_3O_4$ particles was agglomerated as spherical shape, and had a lot of pore and crack inside. Maximum recovery of Mn from the sample in the leaching step was about 67% and residue was the amorphous $MnO_2$. The extraction of Mn increased with increasing temperature, but decreased in proportion to concentration of nitric acid. The extraction rate was in good agreement with the pore diffusion model.

  • PDF

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

Physical modeling of dust polarization spectrum by RAT alignment and disruption

  • Lee, Hyeseung;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2021
  • Dust polarization depends on the physical and mechanical properties of dust, as well as the properties of local environments. To understand how dust polarization varies with grain mechanical properties and the local environment, in this paper, we model the wavelength-dependence polarization of starlight and polarized dust emission by aligned grains by simultaneously taking into account grain alignment and rotational disruption by radiative torques (RATs). We explore a wide range of the local radiation field and grain mechanical properties characterized by tensile strength. We find that the maximum polarization and the peak wavelength shift to shorter wavelengths as the radiation strength U increases due to the enhanced alignment of small grains. Grain rotational disruption by RATs tends to decrease the optical-near infrared polarization but increases the ultraviolet polarization of starlight due to the conversion of large grains into smaller ones. In particular, we find that the submillimeter (submm) polarization degree at 850㎛(P850) does not increase monotonically with the radiation strength or grain temperature (Td), but it depends on the tensile strength of grain materials. Our physical model of dust polarization can be tested with observations toward star-forming regions or molecular clouds irradiated by a nearby star, which have higher radiation intensity than the average interstellar radiation field. Finally, we compare our predictions of the P850-Td relationship with Planck data and find that the observed decrease of P850 with Td can be explained when grain disruption by RATs is accounted for, suggesting that interstellar grains unlikely to have a compact structure but perhaps a composite one. The variation of the submm polarization with U (or Td)can provide a valuable constraint on the internal structures of cosmic dust

  • PDF

Design and Implementation of Machine Learning System for Fine Dust Anomaly Detection based on Big Data (빅데이터 기반 미세먼지 이상 탐지 머신러닝 시스템 설계 및 구현)

  • Jae-Won Lee;Chi-Ho Lin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.55-58
    • /
    • 2024
  • In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dust and big data. This system classifies fine dust through the design of an anomaly detection algorithm according to the outliers for each air quality index classification categories based on machine learning. Depth data of the image collected from the camera collects images according to the level of fine dust, and then creates a fine dust visibility mask. And, with a learning-based fingerprinting technique through a mono depth estimation algorithm, the fine dust level is derived by inferring the visibility distance of fine dust collected from the monoscope camera. For experimentation and analysis of this method, after creating learning data by matching the fine dust level data and CCTV image data by region and time, a model is created and tested in a real environment.

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF

Development and Performance Evaluation of a Real-time PM Monitor based on Optical Scattering Method (광산란방식을 이용한 미세먼지 실시간 모니터링 장치 개발 및 성능평가)

  • Kang, Doo Soo;Oh, Jung Eun;Lee, Sang Yul;Shin, Hee Joon;Bong, Ha Kyung;Kim, Dae Seong
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.107-119
    • /
    • 2018
  • In this study, we have developed a real-time monitoring device for measuring PM10 and PM2.5 of ambient aerosol particles. The real-time PM monitor (SENTRY Dust Monitor) uses the optical scattering method and has 16 channels in particle size. The laboratory and field tests were carried out to evaluate the developed SENTRY Dust Monitor. Arizona Test Dust particles were used as test particles in the laboratory test and the field test was carried out at the Jongno-gu Observatory in Seoul. The measurements of PM10 and PM2.5 concentrations obtained by SENTTRY Dust Monitor were compared with Grimm Dust Monitor (Model 1.108) and a beta ray gauge. It was shown that the PM10 and PM2.5 concentrations obtained by SENTRY Dust Monitor agree well with that of the reference devices. Based on the results obtained in this study, it could be concluded that the SENTRY Dust Monitor can be used as a PM monitoring device for real-time monitoring of the ambient aerosols.