• Title/Summary/Keyword: Model conversion

Search Result 1,347, Processing Time 0.03 seconds

The Velocity Conversion Coefficient and Consistency for the Optimal Phase Ratio on the Performance of the Women's Triple Jump (여자 세단뛰기 운동수행의 일관성과 속도전환계수에 의한 최적의 국면비)

  • Ryu, Jae-Kyun;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the velocity conversion coefficient and invariance for the optimal phase ratio on the performance of the women's triple jump. Methods : Three-dimensional kinematic data were obtained from the three finalists of the women's triple jumper competition at the 2011 Daegu IAAF World Championships. Computer simulations were performed using the biomechanical model of the triple jump to optimize the phase ratio for the longest actual distance for all athletes with altered velocity conversion coefficients. Results : Top elite triple jumpers showed better technical consistency at the phase ratio. Also, no consistent relationship was observed between the loss in horizontal velocity and the gain in vertical velocity across supporting the three phase. In addition, regardless of the magnitude A1, all athletes were optimized with jump-dominated technique. Finally, as the magnitude of A1 increased, the athletes showed better performance. The obtained overall distance jumped showed the longest actual distance when the optimal phase ratio was transferred from hop-dominated to jump-dominated(the step ratio was 30%~31%), and when the optimal phase ratio was transferred from balanced to jump-dominated(the step ratio was 27%~29%). Conclusion : Future studies need to be conducted in order to explore the active landing motion and the inclination angle of the body with the velocity conversion coefficient simultaneously at each supporting phase.

Modeling of Wavelength Conversion Charateristics in Directionally Coupled Semiconductor Optical Amplifier (반도체 광증폭기로 형성된 방향성 결합기에서의 파장변환 특성 모델링)

  • Chung, Ho-Young;Chung, Young-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.43-53
    • /
    • 2001
  • Wavelength conversion devices are essential to build an expanding all-optical network, and various types of wavelength conversion techniques are being researched. Among them, wavelength conversion based on the cross phase modulation in a directionally coupled semiconductor optical amplifier has been introduced and the concept has been experimentally proved. In this paper, a split-step method is applied to properly model the mentioned wavelength converter in the time-domain and various characteristics have been analyzed. It is shown that the present modeling approach can explain the results of the reported experimental results. Furthermore the wavelength conversion is shown to be well performed when the input signal wave and the converted wave travels in the opposite direction. The simulation shows that the positive and negative chirping appear simultaneously at both the leading and trailing of edges of the optical pulse.

  • PDF

Implementation of Mutual Conversion System between Body Movement and Visual·Auditory Information (신체 움직임-시·청각 정보 상호변환 시스템의 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.362-368
    • /
    • 2018
  • This paper has implemented a mutual conversion system that mutually converts between body motion signals and both visual and auditory signals. The present study is based on intentional synesthesia that can be perceived by learning. The Euler's angle was used in body movements as the output of a wearable armband(Myo). As a muscle sense, roll, pitch and yaw signals were used in this study. As visual and auditory signals, MIDI(Musical Instrument Digital Interface) signals and HSI(Hue, Saturation, Intensity) color model were used respectively. The method of mutual conversion between body motion signals and both visual and auditory signals made it easy to infer by applying one-to-one correspondence. Simulation results showed that input motion signals were compared with output simulation ones using ROS(Root Operation System) and Gazebo which is a 3D simulation tool, to enable the mutual conversion between body motion information and both visual and auditory information.

A Study on Feasibility Analysis and Optimum Range Calculation Model by Conversion of Water Supply System (상수도 급수방식 전환의 타당성 분석 및 최적 범위 산정모델 연구)

  • Park, Junyeol;Shin, Hwisu;Seo, Jeewon;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • This study concerned the analysis on the efficiency of the conversion of water tank type supply system to direct water supply system to examine the feasibility of the conversion, as well as the calculation of optimal conversion range that enables the supply of safe, high-quality water at stable pressure in accordance with the standards of water supply facility. The results of this research showed that when converting water supply system from water tank type supply system to direct water supply system, more nodal points could be properly converted and more reduction of electricity usage was expected in case water pressure rather than residence time was fixed. This means that higher efficacy can be obtained by fixing water pressure when converting water supply system. However, since the number of the locations that received on-spot inspection was small and the electricity usage measured was not exclusively by water supply facility, it is difficult to judge that such reduction of electricity usage accurately represents reduced electricity usage by water supply facility alone. therefore, after having secured on-spot information about a larger number of locations in apartment complexes that have converted water supply system, and utilizing information about electricity usage exclusively by water supply facility, the proposed method of this research could be applied to accurately deducing expected reduction of electricity usage by water supply facilities of various other apartment complexes. It is also considered possible to deduce an effective operation method of water supply system by finding out an area that shows low pressure or low residual chlorine concentration in the optimal conversion range of water supply, followed by estimating the proper location of pumping station or the proper chlorine dosage at the power purification plant that supply water to the target area.

The Fast Correlative Vector Direction Finder Conversion (직접 변환을 이용한 고속 상관형 벡터 방향탐지기)

  • Park, Cheol-Sun;Kim, Dae-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents the development of the fast Direction Finder using direct conversion method, which can intercept for short pulse signal of less' than 1 msec. in RF Down Converter, and CVDF(Correlative Vector Direction Finding) algorithm, which estimates DoA (Direction of Arrival). The configuration and characteristics of direction finder using 5-channel equi-spaced circular array antenna are presented and the direct conversion techniques for removing tuning time using I/Q demodulator are described. The CRLB of our model is derived, the principles of 2 kind of CVDF algorithm are explained and their characteristics are compared with CRLB w.r.t the number of samples and spacing ratio. The RF Down Converter prototype using direct conversion method is manufactured, the 2 kind of CVDF algorithm are applied and their performance are analyzed. Finally it is confirmed the LSE based CVDF algorithm is better than correlation-coefficient based except for ambiguity protection capabilities.

Stress Conversion Factor on Penetration Depth of Knoop Indentation for Assessment of Nano Residual Stress (나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석)

  • Kim, Won Jun;Kim, Yeong Jin;Kim, Young-Cheon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.95-100
    • /
    • 2019
  • Nanoindentation has been widely used for evaluating mechanical properties of nano-devices, from MEMS to packaging modules. Residual stress is also estimated from indentation tests, especially the Knoop indenter which is used for the determination of residual stress directionality. According to previous researches, the ratio of the two stress conversion factors of Knoop indentation is a constant at approximately 0.34. However, the ratio is supported by insufficient quantitative analyses, and only a few experimental results with indentation depth variation. Hence, a barrier for in-field application exists. In this research, the ratio of two conversion factors with variation in indentation depth using finite elements method has been attempted at. The magnitudes of each conversion factors were computed at uniaxial stress state from the modelled theoretical Knoop indenter and specimen. A model to estimate two stress conversion factor of the long and short axis of Knoop indenter at various indentation depths is proposed and analyzed.

A Study on Characteristics for a Contract Power Conversion Factor and Analysis of a Maximum Utilization Factor of Transformer in Industrial Customers (산업용전력사용고객의 변압기최대이용률과 계약전력환산율에 관한 연구)

  • Kim, Se-Dong;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.44-49
    • /
    • 2008
  • Contract power conversion factor which is applied to estimate contract power of industrial customers is an important standard to caculate transformer capacity. This paper shows a reasonable contract power conversion factor, that was made by the systematic and statistical way considering actual conditions, such as investigated contact power and peak power for the last 5 years of each customer for 349 industrial customers as to AMR. In this dissertation, it is necessary to analyze the key features and general trend from the investigated data. It made an analysis of the feature parameters, such as average, standard deviation, median, maximum, minimun and thus it was carried by the linear and nonlinear regression analysis. Therefore, this paper compared characteristics for a contract power conversion factor which is a lied to calculate contract power with characteristics for a regression model for customers which maximum utilization factor of transformer is more than 60(%).

A Study on Characteristics for a Contract Power Conversion Factor and Analysis of a Maximum Utilization Factor of Transformer in General Customers (일반용전력사용고객의 변압기최대이용률과 계약전력환산율 기준과의 비교 특성 연구)

  • Kim, Se-Dong;Wang, Yong-Peel
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.80-85
    • /
    • 2008
  • Contract power conversion factor which is applied to estimate contract power of general customers is an important standard to caculate transformer capacity. This paper shows a reasonable contract power conversion factor, that was made by the systematic and statistical way considering actual conditions, such as investigated contract power and peak power for the last 5 years of each customer for 461 general customers as to AMR. In this dissertation, it is necessary to analyze the key features and general trend from the investigated data It made an analysis of the feature parameters, such as average, standard deviation, median, maximum, minimun and thus it was carried by the linear and nonlinear regression analysis. Therefore, this paper compared characteristics for a contract power conversion factor which is applied to estimate contract power with characteristics for a regression model for customers which maximum utilization factor of transformer is more than 60[%].

Thermodynamic Analysis of Vapor Explosion Phenomena (증기폭발 현상의 열역학적 해석)

  • Bang, Kwang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.265-275
    • /
    • 1993
  • A vapor explosion has been a concern in nuclear reactor safety due to its potential for a destructive mechanical energy release. In order to properly assess the hazard of a vapor explosion, it is necessary to accurately estimate the conversion efficiency of the thermal energy to mechanical energy. In the absence of a complete model to determine the explosive energy yield, one may have to rely on a simpler upper bound estimate such as a thermodynamic model. This paper discusses various thermodynamic models and presents a clarification of each model in their mathematical formulation and the thermodynamic work conversion. It is shown that the work release in the shock adiabatic model of Board and Hall is essentially equal to that of Hicks-Menzies thermodynamic model. The effect of coolant void fraction on the explosion efficiency is also predicted based on these thermodynamic models. Finally, the Hicks-Menzies model is modified to account for the chemical reaction between a metallic fuel and water and the resultant effects on the explosion expansion work are discussed.

  • PDF

Deep Learning Model for Incomplete Data (불완전한 데이터를 위한 딥러닝 모델)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • The proposed model is developed to minimize the loss of information in incomplete data including missing data. The first step is to transform the learning data to compensate for the loss information using the data extension technique. In this conversion process, the attribute values of the data are filled with binary or probability values in one-hot encoding. Next, this conversion data is input to the deep learning model, where the number of entries is not constant depending on the cardinality of each attribute. Then, the entry values of each attribute are assigned to the respective input nodes, and learning proceeds. This is different from existing learning models, and has an unusual structure in which arbitrary attribute values are distributedly input to multiple nodes in the input layer. In order to evaluate the learning performance of the proposed model, various experiments are performed on the missing data and it shows that it is superior in terms of performance. The proposed model will be useful as an algorithm to minimize the loss in the ubiquitous environment.