• Title/Summary/Keyword: Model compounds

Search Result 894, Processing Time 0.028 seconds

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.

Effect of Gamijipaesan Extracts against Mastitis Induced by Staphylococcus aureus Infection in a Rat Model through Anti-inflammatory and Antibacterial Effects (가미지패산(加味芷貝散)의 포도상구균 감염 유방염에 대한 항균활성 및 항염 효과)

  • Kwon, Ji-Myung;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.1
    • /
    • pp.1-24
    • /
    • 2013
  • Objectives: The object of this study was to observe the protective effect of Gamijipaesan aqueous extracts(GJS), which has been traditionally used in Korean medicine in obstetrics & gynecological fields as anti-infectious and anti-inflammatory agents, against mastitis induced by Staphylococcus aureus infection in a rat model through antibacterial, antiinflammatory, immunomodulatory, and anti-oxidant effects. Methods: Antibacterial activities of GJS against S. aureus were detected using standard agar microdilution methods, with the effects on the bacterial invasion and intracellular killing of individual test materials in human mammary gland carcinoma cell(MCF-7) and murine macrophages(Raw 264.7) at MIC1/2, MIC and MIC2 concentration levels. In addition, the effects on the cell viability, nitric oxide(NO), tumor necrosis factor(TNF)-${\alpha}$ and interleukin (IL)-6 productions of LPS activated Raw 264.7 cells. The changes on the mammary tissue viable bacterial numbers, myeloperoxidae(MPO), inducible nitric oxide synthetase(iNOS), TNF-${\alpha}$ and IL-6 contents were observed in the S. aureus in vivo intramammary infectious rat model. The anti-bacterial and anti-inflammatory effects were compared with ciprofloxacin and piroxicam, respectively in the present study. Results: MIC of GJS and ciprofloxacin against S. aureus were detected as $0.860{\pm}0.428$ (0.391-1.563) mg/ml and $0.371{\pm}0.262$(0.098-0.782) ${\mu}g/ml$, respectively. In addition, GJS and ciprofloxacin were also showed marked dosage-dependent inhibition of the both bacterial invasion and intracellular killing assays using MCF-7 and Raw 264.7 cells at MIC1/2, MIC and $MIC{\times}2$ concentrations, respectively. $ED_{50}$ against LPS-induced cell viabilities and NO, TNF-${\alpha}$ and IL-6 releases of GJS were detected as 0.72, 0.04, 0.08 and 0.11 mg/ml, and as 19.04, 4.18, 5.37 and 4.27 ${\mu}g/ml$ in piroxicam, respectively. 250 and 500 mg/kg of GJS also inhibit the intramammary bacterial growth, MPO, iNOS, TNF-${\alpha}$ and IL-6 contents in S. aureus in vivo intramammary infected rats, respectively. GJS 500 mg/kg showed quite similar antibacterial and anti-infectious effects as compared with ciprofloxacin 40 mg/kg and also showed similar anti-inflammatory effects as piroxicam 10 mg/kg, in S. aureus in vivo intramammary infectious models. Conclusions: The results obtained in this study suggest that over 250 mg/kg of GJS showed favorable anti-infectious effects against S. aureus infection in a rat model through their antibacterial, anti-inflammatory, immunomodulatory and anti-oxidant effects and therefore expected that GJS can be used as alternative therapies, having both anti-inflammatory and anti-infectious activities. However, more detail mechanism studies should be conducted in future with the efficacy tests of individual herbal composition of GJS and the screening of the biological active compounds in individual herbs. In the present study, GJS 500 mg/kg showed quite similar anti-infectious effects were detected as compared with ciprofloxacin 40 mg/kg treated rats, and also GJS shows quite similar anti-inflammatory effects as compared with piroxicam 10 mg/kg in S. aureus in vivo intramammary infectious rats, but ciprofloxacin did not showed any anti-inflammatory effects, and piroxicam did not showed anti-infectious effects in this study.

Kinetic and Statistical Analysis of Adsorption and Photocatalysis on Sulfamethoxazole Degradation by UV/$TiO_2$/HAP System (UV/$TiO_2$/HAP 시스템에서 Sulfamethoxazole의 흡착과 광촉매반응에 대한 동역학적 및 통계적 해석)

  • Chun, Suk-Young;Chang, Soon-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • Antibiotics have been considered emerging compounds due to their continuous input and persistence in environment. Due to the limited biodegradability and widespread use of these antibiotics, an incomplete removal is attained in conventional wastewater treatment plants and relative large quantities are released into the environment. In this study, it was determined the adsorption and photocatalysis kinetics of antibiotics (Sulfamethoxazole, SMX) with various catalyst (Titanium dioxide; $TiO_2$, Hydroxyapatite; HAP) conditions under UV/$TiO_2$/HAP system. In addition, the statistical analysis of response surface methods (RSM) was used to determine the effects of operating parameters on UV/$TiO_2$/HAP system. $TiO_2$/HAP adsorbent were found to follow the pseudo second order reaction in the adsorption. In the result of applied intrapaticle diffusion model, the constants of reaction rate were $TiO_2$=$0.064min^{-1}$, HAP=$0.2866min^{-1}$ and $TiO_2$/HAP=$0.3708min^{-1}$, respectively.The result of RSM, term of regression analysis in analysis of variance (ANOVA) showed significantly p-value (p<0.05) and high coefficients for determination values($R^2$=96.2%, $R^2_{Adj}$=89.3%) that allowed satisfactory prediction of second order regression model. And the estimated optimal conditions for Y(Sulfamethoxazole removal efficiency, %) were $x_1$(initial concentration of Sulfamethoxazole)=-0.7828, $x_2$(amount of catalyst)=0.9974 and $x_3$(reation time)=0.5738 by coded parameters, respectively. According to the result of intraparticle diffusion model and photocatalysis experiments, it was shown that the $TiO_2$/HAP was more effective system than conventional AOPs(advanced oxidation processes, UV/$TiO_2$ system).

Study of new adsorption isotherm model and kinetics of dissolved organic carbon in synthetic wastewater by granular activated carbon (입상활성탄에 의한 합성폐수의 용존유기물질의 새로운 흡착등온 모델 및 운동학적 흡착 연구)

  • Kim, Seoung-Hyun;Shin, Sunghoon;Kim, Jinhyuk;Woo, Dalsik;Lee, Hosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2029-2035
    • /
    • 2014
  • In this study, we conducted the adsorption equilibrium and batch experiments of dissolved organic carbon (DOC) in the wastewater by granular activated carbon (GAC). The components of organic compound were Beef extract (1.8 mg/L), Peptone (2.7 mg/L), Humic acid (4.2 mg/L), Tannic acid (4.2 mg/L), Sodium lignin sulfonate (2.4 mg/L), Sodium lauryle sulfate (0.94 mg/L), Arabic gum powder (4.7 mg/L), Arabic acid (polysaccharide) (5.0 mg/L), $(NH_4)_2SO_4$ (7.1 mg/L), $K_2HPO_4$ (7.0 mg/L), $NH_4HCO_3$ (19.8 mg/L), $MgSO_4{\cdot}7H_2O$ (0.71 mg/L), The adsorption characteristics of DOC in synthetic wastewater was described using the mathematical model through a series of isotherm and batch experiments. It showed that there was linear adsorption region in the low DOC concentration (0~2.5 mg/L) and favorable adsorption region in high concentration (2.5~6 mg/L). The synthetic wastewater used was prepared using known quantities of organic and/or inorganic compounds. Adsorption modelling isotherms were predicted by the Freundlich, Langmuir, Sips and hybrid isotherm equations. Especially, hybrid isotherm of Linear and Sips equation was a good adsorption equilibrium in the region of the both the low concentration and high concentration. In applying carbon adsorption for treating water and wastewater, hybrid adsorption equation plus linear equation with Sips equation will be a good new adsorption equilibrium model. Linear driving force approximation (LDFA) kinetic equation with Hybrid (linear+Sips) adsorption isotherm model was successfully applied to predict the adsorption kinetics data in various GAC adsorbent amounts.

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.

The Study on the Marine Eco-toxicity and Ecological Risk of Treated Discharge Water from Ballast Water Management System Using Electrolysis (전기분해원리를 이용한 선박평형수관리장치의 배출수에 대한 해양생태독성 및 해양환경위해성에 관한 연구)

  • Shon, M.B.;Son, M.H.;Lee, J.;Son, Y.J.;Lee, G.H.;Moon, C.H.;Kim, Y.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.88-101
    • /
    • 2013
  • The International Convention for the Control and Management of Ship's Ballast Water and Sediments was adopted at 2004 and then various BWMS (ballast water management system) have been developed. In this study, WET (whole effluent toxicity) test with algae (diatom) Skeletonema costatum as primary producer, invertebrate (rotifera) Brachionus plicatilis as 1st consumer and fish (olive flounder) Paralichthys olivaceus as predator, chemical analysis and ERA (environmental risk assessment) were conducted to assess the unacceptable effect on marine ecosystem by emitting the discharge water treated with AquaStar$^{TM}$ BWMS using electrolysis as main treatment equipment for removing the marine organisms in the ship's ballast water. The most sensitive test organism on discharge water treated with AquaStar$^{TM}$ BWMS was S. costatum that gave the NOEC value of 25.00%, LOEC value of 50.00% and 72hr-$EC_{50}$ value of 69.97% from WET test result for 20 psu salinity treated discharge water. NOEC and LOEC value of B. plicatilis and P. olivaceus exposed at 20 psu salinity treated discharge water were 50.00% and 100.00%, respectively. In the chemical analysis results, total number of substances produced by AquaStar$^{TM}$ BWMS was 18 which were bromate, 7 volatile halogenated organic compounds, 7 halogenated acetic acids, 3 halogenated acetonitriles and chloropicrin. Eighteen substances did not consider as persistence and bioaccumulative chemicals. Uncertainty of toxic property of 18 substances was high. PECs of 18 substances calculated by MAMPEC model were ranged from $4.58{\times}10^{-4}$ to $4.87{\mu}g\;L^{-1}$, PNECs of them were ranged from $1.6{\times}10^{-2}$ to $3.2{\times}10^2{\mu}g\;L^{-1}$. And, the PEC/PNEC ratio of 18 substances did not exceed 1. Therefore, ERA for produced substances indicate that the discharge water treated with AquaStar$^{TM}$ BWMS does not pose unacceptable effect on marine life. And $EC_{50}$ value of S. costatum on discharge water treated by BWMS using the electrolysis had positive correlation with initial TRO concentration, concentration and kind & level of HAAs.

Cell Death Study in Embryonic Stem Cell-derived Neurons and Its Applications (배아줄기세포 유래 신경계세포에서의 세포사멸 연구와 그 응용)

  • Lee, Chul-Sang
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Specific protocols to increase the differentiation of neuronal cells from embryonic stem (ES) cells have been well established, such as retinoic acid induction and lineage selection of neuronal cells. For the neuropathological studies, ES-derived neurons (ES neurons) must show normal physiological characteristics related to cell death and survival and should be maintained in vitro for a sufficient time to show insults-specific cell death without spontaneous death. When mouse ES cells were plated onto astrocytes monolayer after retinoic acid induction, most ES cells differentiated into neuronal cells, which were confirmed by the presence of specific neuronal markers, and the cultures were viable for at least four weeks. When these cultures were examined for vulnerability to glutamate excitotoxicity, ES neurons were vulnerable to excitotoxic insults mediated by agonist-specific receptors. The vulnerability to excitotoxic death increased with developmental age of ES neurons in vitro. Specific receptors for Neurotrophin and GDNF family ligands were present in ES neurons. GDNF and NT-3 could modulate the survival and excitotoxic vulnerability of ES neurons. The vulnerability and resistance to toxic insults, which are essential requirements of model culture systems for neuropathological studies, make ES neurons to a useful model culture system. Especially ES cell are highly amenable to genetic modification unlikely to primary neuronal cells, which will give us a chance to answer more complicated neurophysiological questions. Recently there was an outstanding attempt to explore the cellular toxicity using human ES cells (Schrattenholz & Klemm, 2007) and it suggested that ES cells could be a new model system for neurophysiological studies soon and go further a large-scale screening system for pharmacological compounds in the future.

  • PDF

Relative Availability of Iron in Mined Humic Substances for Weanling Pigs

  • Kim, S.W.;Hulbert, L.E.;Rachuonyo, H.A.;McGlone, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1266-1270
    • /
    • 2004
  • Humic substances include several biological active and inactive compounds that are commonly used for improving soil fertility. Use of humic substances in swine diets is a novel concept. Humic substances contain 8,700 mg/kg of iron but its bioavailability is unknown. This study was conducted to test the bioavailability of iron in humic substances for nursery pigs. One hundred twenty five pigs (Newsham, Colorado Springs, CO) were not given supplemental iron while nursing for 21 d. Pigs were weaned on d 21 and allotted to one of five treatments (four control treatments with different levels of supplemented iron; 0, 30, 70 and 88 mg/kg from ${FeSO}_4$ and one treatment with 70 mg/kg iron from humic substances). Pigs were fed diets for 5 wk ad libitum and water was accessible freely. Body weight and feed intake were measured weekly. Blood samples were taken from pigs on d 28 to measure the number of red blood cells and hemoglobin concentration. Pigs fed a diet with the humic substances grew faster (p<0.05) during the first week postweaning, but performance was not different during the entire 5 wk period. Feed intake and gain/feed were the same among treatments. The slope ratio technique was used to estimate relative iron bioavailability. The concentration of blood hemoglobin did not respond to dietary iron levels using this model. However, the number of red blood cells (106/$\mu$l) was modeled by 4.438+0.017${\times}$ 'ron (mg/kg) from ${FeSO}_4$'0.012${\times}$'ron (mg/kg) from the humic substances' Based on the comparison between the slopes (0.012 from humic substances and 0.017 from ${FeSO}_4$), iron in humic substances was 71% as available as the iron in ${FeSO}_4$. The slopes for dietary feed intake of ${FeSO}_4$ and the iron in humic substances did not differ (p>0.05). Humic substances can replace ${FeSO}_4$ as an alternative iron source for pigs at 71% relative bioavailability.

Use of Biosurfactant for the Removal of Organic Pollutants in Soil/Groundwater (바이오 계면활성제에 의한 토양/지하수내 유기성 오염물질 제거)

  • Ko, Seok-Oh;Yoon, Seok-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2000
  • Partitioning of hydrophobic organic compounds (HOCs) to a biosurfactant, hydroxypropyl-${\beta}$-cyclodextrin (HPCD), was conducted to evaluate the feasibility of using HPCD to remove HOCs from soil/groundwater. HOC partitioning to HPCD was very fast, with over 95% of the complexation occurring within 10 min. Some influence of solution chemistry and HOC concentration on HOC-HPCD complex formation coefficients was observed. HPCD sorption on soil as quantified by both a fluorescence technique and total organic carbon measurements was negligible, indicating no significant affinity of HPCD for the solid phase. Although the HOC solubilization capability of HPCD was lower than that of synthetic surfactants such as SDS and Tween 80, HPCD can be effective in removing sorbed HOCs from a model subsurface environment, primarily because of its negligible sorption to the solid phase (i.e., all the HPCD added facilitates HOC elution). However, in contrast with conventional surfactants, HPCD becomes relatively less effective for HOC partitioning with increasing HOC size and hydrophobicity. Therefore, comparisons between HPCD and synthetic surfactants for enhanced remediation applications must consider the specific HOC(s) present and the potential for surfactant material losses to the solid phase, as well as other more generally recognized considerations such as material costs and potential toxicological effects.

  • PDF