• 제목/요약/키워드: Model combustor

검색결과 350건 처리시간 0.023초

모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구 (An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor)

  • 이장수;김민기;박성순;이종근;윤영빈
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

스크램제트 연소기 모델의 고공시험 연구 (The high altitude test method of Scramjet engine combustor model)

  • 우관제;김영수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.271-274
    • /
    • 2002
  • This paper is investigated construction of the Scramjet test facility and test method of Scramjet engine combustor model. Scramiet engine combustor model test was performed at Lab C-16BK CIAM (Central Institute of Aviation Motors) at Tyraevo in Moscow. The velocity of flow in the combustion chamber equal to Mach number 2.49 with single hole fuel spray nozzle injector and test duration equal to 7 seconds. Therefore In this paper is showed high altitude test method of Scramjet combustor model and the proper structure of combustor with single hole fuel spray nozzle.

  • PDF

압력 변화 모사를 통한 초소형 연소기에서의 열손실 예측 모텔 개발 (Development of Model for Heat Loss from a Micro Combustor Using Pressure Simulation)

  • 최권형;권세진;이대훈
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.39-45
    • /
    • 2003
  • As the size of a combustor decreases to a MEMS scale, heat loss increases and becomes a dominant effect on the performance of the devices. Existing models, however, are not adequate to predict the heat transfer and combustion processes in such small scales. In the present study, a semi-empirical model to calculate heat loss from a micro combustor is described. The model derives heat transfer coefficients that best fits the heat loss characteristics of a micro combustor that is represented by transient pressure record after combustion is completed. From conservation of energy equation applied to the burned gas inside the combustor, a relationship between pressure and heat transfer is reduced. Two models for heat transfer coefficients were tested; a constant and first order polynomial of temperature with its coefficients determined from fitting with measurements. The model was tested on a problem of cooling process of burnt gas in a micro combustor and comparison with measurements showed good agreements. The heat transfer coefficients were used for combustion calculation in a micro vessel. The results showed the dependence of flame speed on the scale of the chamber through enhanced heat loss.

Development of an Engineering Model of Hydrogen-Fueled Ultra-micro Combustor for UMGT

  • Shimotori, Shoko;Yuasa, Saburo;Sakurai, Takashi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.828-836
    • /
    • 2008
  • To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.

  • PDF

Wedge형 보염기를 장착한 동축형 연소기의 반응 유동장 수치해석 (Numerical Analysis on the Reacting Flow-Field of Coaxial Combustor with a Wedge-Shaped Flame Holder)

  • 고현;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.450-454
    • /
    • 2005
  • 축대칭 동축형 램제트 연소기에 대한 반응 유동장 해석을 수행하였다. 2차원 축대칭 Wavier-Stokes 방정식과 낮은 레이놀즈 수 $k-\varepsilon$ 난류 모델을 이용하였고, 유한반응률 화학반응 모델을 적용하였다. 난류 연소 모델인 EDM (Eddy-Dissipation Model)과 층류 반응 모델을 적용한 경우를 서로 비교하였다. 급확대 연소기와 wedge형 보염기를 장착한 동축형 램제트 연소기에 대한 반응 유동장 수치해석을 통해 두 가지 결과를 화염안정 측면에서 서로 비교하였다.

  • PDF

네트워크 모델링 기법을 이용한 환형 가스터빈 연소기(GT24)에서의 음향장 해석 (Acoustic Analysis in an Annular Gas Turbine Combustor (GT24) Network Modeling Approach)

  • 장재우;노현구;김대식
    • 한국분무공학회지
    • /
    • 제28권3호
    • /
    • pp.119-125
    • /
    • 2023
  • In this research, a network model was developed to predict combustion instability in an annular gas turbine combustor (GT24) for power generation. The model consisted of various acoustic elements such as several ducts and area changes which could represent a real combustor with a complex geometry, applied mass, momentum, and energy equations to each element. In addition, a one-dimensional network model through a cylindrical coordinate system has been proposed to predict various acoustic modes. As a result of the analysis, the key resonant frequencies such as longitudinal, circumferential, and complex modes were derived from the EV combustor of GT24, and the reliability of the current model was verified through comparison with the 3D Helmholtz solver.

모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구 (Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor)

  • 진유인;유경원;민성기;김홍집
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

가스터빈 연소기에서 화염의 위치를 고려한 열음향 해석 (Thermoacoustic Analysis Considering Flame Location in a Gas Turbine Combustor)

  • 김대식;김사량;김규태
    • 한국연소학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Authors' previous works on thermoacoustic(TA) model development showed good results in predicting combustion instability characteristics in a gas turbine combustor. However, they also suggested there were some limitations in growth rate estimation, which might be related with over-simplification of flame structure. As a first trial for improving the model accuracy, the current paper introduces the modified TA model considering the actual flame location in the combustor. The combustor is divided into the unburned and the burned area before and after the flame location, and then acoustic equations are re-organized. The modified TA model results show a better accuracy in predicting the growth rate of instabilities comparing with the previous results. However, obtained results still overestimate the conditions where the combustor goes unstable. Further researches considering heat release distribution through flames are required.

연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구 (A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor)

  • 장문석;이기만
    • 한국연소학회지
    • /
    • 제21권2호
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

초소형 연소기내 화염전파의 수치모사 (Numerical Simulation of Flame Propagation in a Micro Combustor)

  • 최권형;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.