• Title/Summary/Keyword: Model coil

Search Result 454, Processing Time 0.031 seconds

DC V-I Characteristics of a High Temperature Superconductor for a 600 kJ Superconducting Magnetic Energy Storage Device in an Oblique External Magnetic Field (경사 외부자장에 대한 600 kJ급 SMES용 HTS도체의 DC V-I 특성)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Choi, Se-Yong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • We are developing a small-sized high temperature superconducting magnetic energy storage (HTS-SMES) magnet with the nominal storage capacity of 600 kJ, which provides electric power with high quality to sensitive electric loads. Critical current and N-value of a high temperature superconductor with large current, which was selected for the development of the 600 kJ HTS-SMES magnet, were investigated in various oblique external magnetic fields. Based on the critical current and N-value measured for the short sample conductor, we discussed the DC V - I characteristic of a model coil fabricated with the same conductor of 500 m. The results show that the measured critical current and N-value of the conductor for parallel field are constant in external magnetic fields less than about 0.2 T. However, for oblique fields, its critical current and N -value abruptly decrease in all external magnetic fields. Moreover, the measured critical current of the model coil well agrees with the numerically calculated one based on the DC V - I characteristic measured for the short sample conductor. This suggest that losses and critical currents for an HTS-SMES magnet made up of a high temperature superconductor with anisotropic characteristic are predictable from the data of a short sample conductor.

Design Optimization of Moving-Coil Type Linear Actuator Using Level Set Method and Phase-Field Model (레벨셋법과 페이즈 필드 모델을 이용한 가동코일형 리니어 액추에이터 최적설계)

  • Lim, Sung-Hoon;Oh, Se-Ahn;Min, Seung-Jae;Hong, Jung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1223-1228
    • /
    • 2011
  • A moving-coil type linear actuator has been widely used in the system reciprocating short stroke because of its several advantages, such as the structural simplicity, low weight and a fast control response speed. This paper presents a design approach for improving the actuating performance with a clear expression of optimal configuration represented by a level set function. The optimization problem is formulated to minimize the variation of magnetic force at every moving displacement of the mover for fast and easy control. To consider the manufacturability of actuator, the concept of phase-field model is incorporated to control the complexity of structural boundaries. To verify the usefulness of the proposed method, the core design example of cylindrical linear actuator is performed.

Hisrological Alterations and Immune Response Induced by Pet Toxin During Colonization with Enteroaggregative Escherichia coil (EAEC) in a Mouse Model Infection

  • Eslava, Carlos;Sainz, Teresita;Perez, Julia;Fresan, Ma.Cristina;Flores, Veronica;Jimenez, Luis;Hernandez, Ulises;Herrera, Ismael
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Enteroaggregative E. coil (EAEC) is an important aethiological causal agent of diarrhea in people of developed and undeveloped countries. Different in vitro and in vivo models have been proposed to study the pathdgenic and immune mechanisms of EAEC infaction. The aim of this study was to analyze whether BALB/c mice could be used as an animal model to study EAEC pathogenesis Six-week-old BALB/c mice were inoculated with EAEC strain 042 (044:H88) nalidixic acid resistant, and re-inoc-ulated ten days after. Mice feces were monitored for the presence of the EAEC strain over a period of 20 days . Bacteria were enumerated on MacConkey agar containing 100$\mu$g of nalidixic acid per ml. Results showed that 35% of the animals were colonized for 3 days, 15% for 5 and 10% for more than 7 days . After re-inoculation only 16% of the animals remained colonized for more than 3 days. During the necropsy, the intestinal fluid of same of the infected animals presented mucus and blood. Six of these fluids showed the presence of IgA antibodies againset Pet toxin and IgG natibodies raised against the toxin were also detected in the animal serum. Histopathologic evidence confirms the stimulation of mucus hypersecretion, an increased amount of goblet cells and the presence of bacterial aggregates in the apical surfaces of intestinal epithelial cells. Edema was present in the submucosa. These results suggest that BALB/c mice could be used as an animal model for in vivo study of EAEC infection.

Set-Up model for the silicon steel cold rolling mill

  • Kim, Sang-Kyun;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1323-1326
    • /
    • 2003
  • In this paper, we propose set-up model of silicon steel cold rolling mill. Until now, the working of Silicon Steel is operated using the look-up table value of roll force which a field operator finds by making good use of his experience. Therefore, the standardization of data and an improvement of the quality on product are very difficult. So we establish neural model using field data of various kinds of coil at each pass.

  • PDF

Design and Characteristic Analysis of Moving Coil type Linear Oscillatory Actuator Considering Unbalanced Magnetic Circuit (불평형 자기회로를 고려한 가동 코일형 리니어 진동 엑추에이터의 설계 및 특성해석)

  • Kim, Duk-Hyun;Eum, Sang-Joon;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.403-410
    • /
    • 2000
  • This paper deals with a study to improve the performance of Moving Coil type Linear Oscillatory Actuator (MC-LOA) considering unbalanced magnetic circuit. MC-LOA has an unbalanced magnetic circuit due to its asymmetric structure. In this type of LOA, the airgap flux density tends to have different magnitude along mover's displacement and the current directions. The above property causes eccentric of displacement center and interferes with the proper oscillation of LOA. Therefore, this paper presents two models having the unbalanced magnetic circuit and the other balanced by the saturated core. In order to compare the characteristics between the two models, a characteristic analysis for both the basic model and the improved model is performed by their dynamic analysis composed of kinetic and electric equations and Finite Element Method (FEM). The propriety of the improved model is verified through the experimental results.

  • PDF

Numerical and experimental analysis of temperature distribution in TEFC induction motor (전폐형 유도전동기의 온도분포에 관한 수치 및 실험적 해석)

  • Yun, Myeong-Geun;Go, Sang-Geun;Han, Song-Yeop;Lee, Yang-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.457-472
    • /
    • 1997
  • We studied the temperature distribution and heat transfer characteristics of TEFC induction motor with thermal network program for more efficient design and better cooling performance of it. We knew the characteristics and the windage loss of outer cooling fan from fan test experiments. Frame axial and peripheral heat transfer coefficients and endwinding heat transfer coefficient were measured by various model experiments and then, compared with other experimental results. Frame was the main heat transfer surface, load-side and fan-side surface were not thermally symmetric from the heat flux distribution analysis. Steady and unsteady temperature distributions were measured by real motor experiments. From the results, we knew that rotor surface temperature was higher than coil temperature and the hottest spot in the coil was loadside endwinding outside surface. We compared the simulation results with those of real motor test and the two results showed a good agreement.

Analysis and Optimization of Wireless Power Transfer Efficiency Considering the Tilt Angle of a Coil

  • Huang, Wei;Ku, Hyunchul
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • Wireless power transfer (WPT) based on magnetic resonant coupling is a promising technology in many industrial applications. Efficiency of the WPT system usually depends on the tilt angle of the transmitter or the receiver coil. This work analyzes the effect of the tilt angle on the efficiency of the WPT system with horizontal misalignment. The mutual inductance between two coils located at arbitrary positions with tilt angles is calculated using a numerical analysis based on the Neumann formula. The efficiency of the WPT system with a tilted coil is extracted using an equivalent circuit model with extracted mutual inductance. By analyzing the results, we propose an optimal tilt angle to maximize the efficiency of the WPT system. The best angle to maximize the efficiency depends on the radii of the two coils and their relative position. The calculated efficiencies versus the tilt angle for various WPT cases, which change the radius of RX ($r_2=0.075m$, 0.1 m, 0.15 m) and the horizontal distance (y=0 m, 0.05 m, 0.1 m), are compared with the experimental results. The analytically extracted efficiencies and the extracted optimal tilt angles agree well with those of the experimental results.

A new approach to working coil design for a high frequency full bridge series resonant inverter fitted contactless induction heater

  • Dhar, Sujit;Dutta, Biswajit;Ghoshroy, Debasmita;Roy, Debabrata;Sadhu, Pradip Kumar;Ganguly, Ankur;Sanyal, Amar Nath;Das, Soumya
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.283-291
    • /
    • 2017
  • High frequency full bridge series resonant inverters have become increasingly popular among power supply designers. One of the most important parameter for a High Frequency Full Bridge Series Resonant Inverter is optimal coil design. The optimal coil designing procedure is not a easy task. This paper deals with the New Approach to Optimal Design Procedure for a Real-time High Frequency Full Bridge Series Resonant Inverter in Induction Heating Equipment devices. A new design to experimental modelling of the physical properties and a practical power input simulation process for the non-sinusoidal input waveform is accepted. The design sensitivity analysis with Levenberg-Marquardt technique is used for the optimal design process. The proposed technique is applied to an Induction Heating Equipment devices model and the result is verified by real-time experiment. The main advantages of this design technique is to achieve more accurate temperature control with a huge amount of power saving.

Design of Control System for All-Metal Domestic Induction Heating Considering Temperature and Quick-Response (워킹코일 온도 및 제어 속응성을 고려한 All-Metal Domestic Induction Heating 제어 시스템 설계)

  • Park, Sang-Min;Jang, Eun-Su;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this paper, an all-metal domestic induction heating (IH) system that can quickly identify ferromagnetic and non-ferromagnetic pots considering temperature changes in the working coil is designed. Load modeling is performed after analyzing the parameters of the pot material and the central misalignment of the working coil. To improve the performance and stability of the all-metal IH cooking heater, a power curve-fitting model is used to design a control system that quickly responds to load parameter fluctuations. In addition, a power control algorithm is established to compensate for the reference value by reflecting the increase in working coil temperature during heating of the non-ferromagnetic pot. The validity of the proposed control algorithm for the all-metal IH is verified by experiments using a 3.2 kW all-metal IH cooking heater.

Comparison and Analysis of Linear Oscillatory Actuator According to Mover Type (왕복운동 리니어 액추에이터의 가동자 형태에 따른 전자기적 특성해석 및 비교)

  • 장석명;최장영;정상섭;이성호;조한욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.213-223
    • /
    • 2004
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. The advantages of such a motor are that it has a good linearity and has no need of such mechanical energy conversion parts, which change rotary motion into linear motion, as screws, gears, chains etc In this paper, two structures of LOA are analyzed. One is the moving-coil type LOA and the other is moving-magnet type LOA. Two types of LOA are analyzed, with reference to the following parameters as variables: magnetic field, flux linkage, motor thrust and back emf. These variables are derived by the use of analytical method in terms of two-dimensional rectangular coordinate system. The maximum values of thrust according to such design parameters as air-gap length and magnet height for each model is also represented. The results are validated extensively by comparison with finite element method. In particular, we experiment moving-coil LOA which is already manufactured and confirm that the experimental results are shown in good agreement with analysis through the comparison of between analytical and experimental results