• Title/Summary/Keyword: Model and full-scale test data

Search Result 95, Processing Time 0.027 seconds

Assessment of Daylight Environment on Light Pipe System Under Different Solar Position (태양의 위치에 따른 광파이프 시스템의 실내 주광환경평가)

  • Shin, Hwa-Young;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.78-86
    • /
    • 2008
  • The aim of this paper is to show the daylight environment of a light pipe system according to sun movement. A light pipe system has been mounted on the roof of the windowless full scale model: the solar spot has diameter of 0.65m and is 1.3m long, giving an aspect ratio of 1:2. The full scale model was installed on the rooftop of the SHINAN apartment in Yongin city that has no obstructions against sunlight. The test room is equipped with sensors for the measurements of the internal illuminance and has an area of 6m(W)$\times$6m(D)$\times$4m(H). The system has been monitored with a data-logger to evaluate the cumulative distribution of illuminance on a floor-plane from 16th, April to 29th, May, 2008 over one month and selected clear sky condition. For the daylight performance of floor area, the totally 49 measuring points has been used to determine the internal illuminance and an HP datalogger(HP34970A) records the measurements for one consecutive month. The horizontal external illuminance has been measured with two outdoor sensors. This paper presents the results of monitoring light pipe system with internal/external illuminance ratio and cumulative frequency distribution of floor-plane illuminance are discussed The results show that lightpipe is proficient device for introducing daylight into the building. However It provided different daylight indoor environment with wide or narrow Interquatile range of illuminance, internal/external illuminance ratio and cumulative frequency distribution according to solar positions under suuny sky condition. For more achieving the improvement of lightpipes also include energy savings, user visual comfort with various indicators; seasonal solar height, room and lightpipes geometries.

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol-Ho;Kim, Jin-Won;Lee, Seung-Dong;Ahn, Jae-Kwon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.168-179
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed that the proposed connections can exhibit punching shear strength and connection stiffness exceeding those of R/C flat plate counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of this study. The application of the proposed modeling procedure to progressive collapse prevention design is also illustrated.

  • PDF

Theoretical and experimental study on shear strength of precast steel reinforced concrete beam

  • Yang, Yong;Xue, Yicong;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • With the aim to put forward the analytical model for calculating the shear capacity of precast steel reinforced concrete (PSRC) beams, a static test on two full-scale PSRC specimens was conducted under four-point loading, and the failure modes and strain developments of the specimens were critically investigated. Based on the test results, a modified truss-arch model was proposed to analyze the shear mechanisms of PSRC and cast-in-place SRC beams. In the proposed model, the overall shear capacity of PSRC and cast-in-place SRC beams can be obtained by combining the shear capacity of encased steel shape with web concrete determined by modified Nakamura and Narita model and the shear capacity of reinforced concrete part determined by compatible truss-arch model which can consider both the contributions of concrete and stirrups to shear capacity in the truss action as well as the contribution of arch action through compatibility of deformation. Finally, the proposed model is compared with other models from JGJ 138 and AISC 360 using the available SRC beam test data consisting of 75 shear-critical PSRC and SRC beams. The results indicate that the proposed model can improve the accuracy of shear capacity predictions for shear-critical PSRC and cast-in-place SRC beams, and relatively conservative results can be obtained by the models from JGJ 138 and AISC 360.

Cyclic mechanical model of semirigid top and seat and double web angle connections

  • Pucinotti, Raffaele
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.139-157
    • /
    • 2006
  • In this paper, a cyclic mechanical model is presented to simulate the behaviour of top and seat with web angle beam-to-column connections. The introduced mechanical model is compared with Eurocode 3 Annex J, its extension, and with experimental data. To have a better insight regarding the actual response of the joints, available results of the experiments, carried out on full-scale top and seat angle joints under monotonic and cyclic loading, are first considered. Subsequently, a finite element model of the test setup is developed. The application of the proposed model, its comparisons with the experimental curves and with the Eurocode 3 Annex J and with its modification, clearly show the excellent quality of the model proposed.

A Study on the Failure Behavior of Overhanging Geosynthetic-Reinforced Soil Structure Considering Dilatancy Characteristics of Compacted Soil (다짐토의 다일러턴시 특성을 고려한 역경사형 토목섬유 보강토 구조물의 파괴 거동 분석)

  • Kim Eun-Ra;Kang Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.65-75
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted as an effect arising from the reinforcement works preventing the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan (1994), and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could explain effectively the experimental results which are obtained by a full-scale in-situ model test.

System Identification of Dynamic Systems Using Structural Reanalysis Method (재해석 기법을 이용한 동적 구조시스템의 System Identification)

  • Han, Kyoung-Bong;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.421-424
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrelated noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. Full scale pseudo dynamic pier test is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise is also addressed.

  • PDF

Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications

  • Ryu, Min Cheol;Jung, Jun Hyung;Kim, Yong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.537-553
    • /
    • 2016
  • This paper addresses the safety of two-row tank design by performing the extensive sloshing model tests. Owing to the uncertainties entangled with the scale law transforming the measured impact pressure up to the full scale one, so called comparative approach was taken to derive the design sloshing load. The target design vessel was chosen as 230 K LNG-FPSO with tow-row tank arrangement and the reference vessel as 138 K conventional LNG carrier, which has past track record without any significant failure due to sloshing loads. Starting with the site-specific metocean data, ship motion analysis was carried out with 3D diffraction-radiation program, then the obtained ship motion data was used as 6DOF tank excitation for subsequent sloshing model test and analysis. The statistical analysis was carried out with obtained peak data and the long-term sloshing load was determined out of it. It was concluded that the normalized sloshing impact pressure on 230 K LNG-FPSO with two-row tank arrangement is higher than that of convectional LNG carrier, hence requires the use of reinforced cargo containment system for the sake of failure-free operation without filling limitation.

Modeling of non-seismically detailed columns subjected to reversed cyclic loadings

  • Tran, Cao Thanh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.163-178
    • /
    • 2012
  • A strut-and-tie model is introduced in this paper to predict the ultimate shear strength of non-seismically detailed columns. The validity and applicability of the proposed strut-and-tie model are evaluated by comparison with available experimental data. The model was developed based on visible crack patterns observed on the test specimens. The concrete contribution is integrated into the strut-and-tie model through a concept of equivalent transverse reinforcement. To further validate the model a full-scale non-seismically detailed reinforced concrete column was tested to investigate its seismic behavior. The specimen was tested under the combination of a constant axial load, $0.30f_c{^{\prime}}A_g$ and quasi-static cyclic loadings simulating earthquake actions. Quasi-static cyclic loadings simulating earthquake actions were applied to the specimen until it could not sustain the applied axial load. The analytical results reveal that the strut-and-tie method is capable of modeling to a satisfactory accuracy the ultimate shear strength of non-seismically detailed columns subjected to reserved cyclic loadings.

The Bearing Capacity of Top Base Foundations in Soft Ground (연약지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.401-414
    • /
    • 2010
  • Top Base Foundation(TBF) is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. However, when the design values from exiting Japanese standard are compared with the observation values from the field measurement, the bearing capacity of exiting standard estimated smaller For this reason, it is necessary to establish more reasonable prediction technique considering to understand the behavior of TBF in soft ground. In this study, 1/5 scale model tests were performed in the laboratory. Also, full scale tests were carried out in order to investigate the behavior of TBF with various shapes. In addition, about 100 sites measurement data were evaluated to investigate the behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to establish more reasonable the bearing capacity equation of TBF considering various N-value of soil, the effect of underground water and failure shapes.

  • PDF

Cracking Behavior of Prestressed Concrete Cylinder Pipe (프리스트레스트 콘크리트 실린더의 균열거동 연구)

  • Chung, Chul-Hun;Kim, Jong-Suk;Song, Na-Young
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.122-130
    • /
    • 2008
  • The cracking behavior of prestressed concrete members is important for the rational evaluation of PCC pipes. However, the test data on the cracking behavior of PCC pipes are very limited. The purpose of the present study is to investigate the cracking behavior of PCC pipes under different settlement conditions. In this paper, experimental test on the full scale model of PCC pipe was conducted and observed in order to study cracking load in PCC pipes. Based test and FEM analysis results, this paper also presents the cracking load prediction in PCC pipe. Based on the numerical analysis results performed in this research, the cracking behaviors of PCC pipe with the variation of the settlement conditions were evaluated.