• Title/Summary/Keyword: Model Update Method

Search Result 280, Processing Time 0.027 seconds

A Dual Modeling Method for a Real-Time Palpation Simulator

  • Kim, Sang-Youn;Park, Se-Kil;Park, Jin-Ah
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • This paper presents a dual modeling method that simulates the graphic and haptic behavior of a volumetric deformable object and conveys the behavior to a human operator. Although conventional modeling methods (a mass-spring model and a finite element method) are suitable for the real-time computation of an object's deformation, it is not easy to compute the haptic behavior of a volumetric deformable object with the conventional modeling method in real-time (within a 1kHz) due to a computational burden. Previously, we proposed a fast volume haptic rendering method based on the S-chain model that can compute the deformation of a volumetric non-rigid object and its haptic feedback in real-time. When the S-chain model represents the object, the haptic feeling is realistic, whereas the graphical results of the deformed shape look linear. In order to improve the graphic and haptic behavior at the same time, we propose a dual modeling framework in which a volumetric haptic model and a surface graphical model coexist. In order to inspect the graphic and haptic behavior of objects represented by the proposed dual model, experiments are conducted with volumetric objects consisting of about 20,000 nodes at a haptic update rate of 1000Hz and a graphic update rate of 30Hz. We also conduct human factor studies to show that the haptic and graphic behavior from our model is realistic. Our experiments verify that our model provides a realistic haptic and graphic feeling to users in real-time.

Laser Spot Detection Using Robust Dictionary Construction and Update

  • Wang, Zhihua;Piao, Yongri;Jin, Minglu
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 2015
  • In laser pointer interaction systems, laser spot detection is one of the most important technologies, and most of the challenges in this area are related to the varying backgrounds, and the real-time performance of the interaction system. In this paper, we present a robust dictionary construction and update algorithm based on a sparse model of background subtraction. In order to control dynamic backgrounds, first, we determine whether there is a change in the backgrounds; if this is true, the new background can be directly added to the dictionary configurations; otherwise, we run an online cumulative average on the backgrounds to update the dictionary. The proposed dictionary construction and update algorithm for laser spot detection, is robust to the varying backgrounds and noises, and can be implemented in real time. A large number of experimental results have confirmed the superior performance of the proposed method in terms of the detection error and real-time implementation.

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.

Object Tracking Based on Weighted Local Sub-space Reconstruction Error

  • Zeng, Xianyou;Xu, Long;Hu, Shaohai;Zhao, Ruizhen;Feng, Wanli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.871-891
    • /
    • 2019
  • Visual tracking is a challenging task that needs learning an effective model to handle the changes of target appearance caused by factors such as pose variation, illumination change, occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local sub-space reconstruction error is presented. First, accounting for the appearance changes in the tracking process, a generative weight calculation method based on structural reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware is introduced, in which we reconstruct a new template instead of simply exploiting the best observation for template update. The effectiveness and feasibility of the proposed algorithm are verified by comparing it with some state-of-the-art algorithms quantitatively and qualitatively.

Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data

  • Lei, Y.;Wang, H.F.;Shen, W.A.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.471-483
    • /
    • 2012
  • In this paper, the structural health monitoring (SHM) benchmark problem of the Canton tower is studied. Based on the field monitoring data from the 20 accelerometers deployed on the tower, some modal frequencies and mode shapes at measured degrees of freedom of the tower are identified. Then, these identified incomplete modal data are used to update the reduced finite element (FE) model of the tower by a novel algorithm. The proposed algorithm avoids the problem of subjective selection of updated parameters and directly updates model stiffness matrix without model reduction or modal expansion approach. Only the eigenvalues and eigenvectors of the normal finite element models corresponding to the measured modes are needed in the computation procedures. The updated model not only possesses the measured modal frequencies and mode shapes but also preserves the modal frequencies and modes shapes in their normal values for the unobserved modes. Updating results including the natural frequencies and mode shapes are compared with the experimental ones to evaluate the proposed algorithm. Also, dynamic responses estimated from the updated FE model using remote senor locations are compared with the measurement ones to validate the convergence of the updated model.

A New Mobility Modeling and Comparisons of Various Mobility Models in Zone-based Cellular Networks (영역 기준 이동통신망에서 이동성의 모형화 및 모형들의 비교 분석)

  • Hong, J.S.;Chang, I.K.;Lee, J.S.;Lie, C.H.
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.21-27
    • /
    • 2003
  • Objective of this paper is to develop the user mobility model(UMM) which is used for the performance analysis of location update and paging algorithm and at the same time, consider the user mobility pattern(UMP) in zone-based cellular networks. User mobility pattern shows correlation in space and time. UMM should consider these correlations of UMP. K-dimensional Markov chain is presented as a UMM considering them where the states of Markov chain are defined as the current location area(LA) and the consecutive LAs visited in the path. Also, a new two dimensional Markov chain composed of current LA and time interval is presented. Simulation results show that the appropriate size of K in the former UMM is two and the latter UMM reflects the characteristic of UMP well and so is a good model for the analytic method to solve the performance of location update and paging algorithm.

Establishment of Priority Update Area for Land Coverage Classification Using Orthoimages and Serial Cadastral Maps

  • Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, Jin Sue
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.763-776
    • /
    • 2021
  • This paper introduces a method of selecting priority update areas for subdivided land cover maps by training orthoimages and serial cadastral maps in a deep learning model. For the experiment, orthoimages and serial cadastral maps were obtained from the National Spatial Data Infrastructure Portal. Based on the VGG-16 model, 51,470 images were trained on 33 subdivided classifications within the experimental area and an accuracy evaluation was conducted. The overall accuracy was 61.42%. In addition, using the differences in the classification prediction probability of the misclassified polygon and the cosine similarity that numerically expresses the similarity of the land category features with the original subdivided land cover class, the cases were classified and the areas in which the boundary setting was incorrect and in which the image itself was determined to have a problem were identified as the priority update polygons that should be checked by operators.

Estimating the Application Possibility of High-resolution Satellite Image for Update and Revision of Digital Map (수치지도의 수정 및 갱신을 위한 고해상도 위성영상의 적용 가능성 평가)

  • 강준묵;이철희;이형석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.313-321
    • /
    • 2002
  • Supplying high-resolution satellite image, we take much interest in the update and the revision of digital map and thematic map based on the satellite image. This study presented the possibility of the update and the revision to the existing digital map on a scale of l/5,000 and 1/25,000 to take advantage of the IKONOS satellite image. We performed geometric correction to make use of the ground control points of the existing digital map in IKONOS mono-image and created ortho-image by extracting digital elevation model from three dimensional contour data and altitude on the existing digital map. We revised changed features in the method of screen digitizing by overlapping orthorectified satellite image and existing digital map and flawed features of the unchanged area on the satellite images for positional accuracy analysis. As a result, rectification error is calculated at $\pm$3.35m by RMSE. There is a good possibility of update of digital map under the scale of 1/10,000. It is possible to the update of the large scale digital map over the scale of l/5,000, as if we used the method of stereo image and ground control point surveying.

Updating of Finite Element Model and Joint Identification with Frequency Response Function (주파수응답함수를 이용한 유한요소모델의 개선 및 결합부 동정)

  • 서상훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • Despite of the development in the finite element method, it is difficult to get the finite element model describing the dynamic characteristics of the complex structure exactly. Therefore a number of different methods have been developed in order to update the finite element model of a structure using vibration test data. This paper outlines the basic formulation for the frequency response function based updating method. One important advantage of this method is that the intermediate step of performing an eigensolution extraction is unnecessary. Using simulated experimental data, studies are conducted in the case of 10 DOF discrete system. The solution of noisy and incomplete experimental data is discussed. True measured frequency response function data are used for updating the finite element model of a beam and a plate. Its applicability to the joint identification is also considered.

  • PDF

Study on 3D Object (Building) Update and Construction Method for Digital Twin Implementation (디지털 트윈 구현을 위한 3차원 객체(건물) 갱신 및 구축 방안 연구)

  • Kwak, Byung-Yong;Kang, Byoung-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.186-192
    • /
    • 2021
  • Recently, the demand for more precise and demand-oriented customized spatial information is increasing due to the 4th industrial revolution. In particular, the use of 3D spatial information and digital twins which based on spatial information, and research for solving social problems in cities by using such information are continuously conducted. Globally, non-face-to-face services are increasing due to COVID-19, and the national policy direction is also rapidly progressing digital transformation, digitization and virtualization of the Korean version of the New Deal, which means that 3D spatial information has become an important factor to support it. In this study, physical objects for cities defined by world organizations such as ISO, OGC, and ITU were selected and the target of the 3D object model was limited to buildings. Based on CityGML2.0, the data collected using a drone suitable for building a 3D model of a small area is selected to be updated through road name address and building ledger, which are administrative information related to this, and LoD2.5 data is constructed and urban space. It was intended to suggest an object update method for a 3D building among data.