• Title/Summary/Keyword: Model Objects

Search Result 2,118, Processing Time 0.03 seconds

Real-Time Detection of Moving Objects from Shaking Camera Based on the Multiple Background Model and Temporal Median Background Model (다중 배경모델과 순시적 중앙값 배경모델을 이용한 불안정 상태 카메라로부터의 실시간 이동물체 검출)

  • Kim, Tae-Ho;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.269-276
    • /
    • 2010
  • In this paper, we present the detection method of moving objects based on two background models. These background models support to understand multi layered environment belonged in images taken by shaking camera and each model is MBM(Multiple Background Model) and TMBM (Temporal Median Background Model). Because two background models are Pixel-based model, it must have noise by camera movement. Therefore correlation coefficient calculates the similarity between consecutive images and measures camera motion vector which indicates camera movement. For the calculation of correlation coefficient, we choose the selected region and searching area in the current and previous image respectively then we have a displacement vector by the correlation process. Every selected region must have its own displacement vector therefore the global maximum of a histogram of displacement vectors is the camera motion vector between consecutive images. The MBM classifies the intensity distribution of each pixel continuously related by camera motion vector to the multi clusters. However, MBM has weak sensitivity for temporal intensity variation thus we use TMBM to support the weakness of system. In the video-based experiment, we verify the presented algorithm needs around 49(ms) to generate two background models and detect moving objects.

A Method of Cross-Section Processing for the SHGC Description of a Range Image (거리영상의 SHGC 표현을 위한 단면 처리법)

  • 김태우;최병욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.190-198
    • /
    • 1994
  • In this paper, we propose the cross-section processing method which is simple in describing the SHGC of objects in a range image and which can describe the SHGC of occluded objects for the recognition of 3D objects. This method produces the cross-sections of an object along the assumed axis of the SHGC and describes the SHGC of the object by processing the produced cross-sections of the object using $\psi$ -S curves with invariant properties in position and size. Our method is simple in a process and can descirbe the SHGC of partially occluded objects because it uses range images with 3-D informations of objects without matching contours of objects with a model base. Thus it is a useful description method of a range image for the recognition of 3D objects shaped in SHGC form and we proved the usefulness of it in experiments.

  • PDF

Real-Time Objects Tracking using Color Configuration in Intelligent Space with Distributed Multi-Vision (분산다중센서로 구현된 지능화공간의 색상정보를 이용한 실시간 물체추적)

  • Jin, Tae-Seok;Lee, Jang-Myung;Hashimoto, Hideki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.843-849
    • /
    • 2006
  • Intelligent Space defines an environment where many intelligent devices, such as computers and sensors, are distributed. As a result of the cooperation between smart devices, intelligence emerges from the environment. In such scheme, a crucial task is to obtain the global location of every device in order to of for the useful services. Some tracking systems often prepare the models of the objects in advance. It is difficult to adopt this model-based solution as the tracking system when many kinds of objects exist. In this paper the location is achieved with no prior model, using color properties as information source. Feature vectors of multiple objects using color histogram and tracking method are described. The proposed method is applied to the intelligent environment and its performance is verified by the experiments.

Moving Object Tracking Using Active Contour Model (동적 윤곽 모델을 이용한 이동 물체 추적)

  • Han, Kyu-Bum;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.697-704
    • /
    • 2003
  • In this paper, the visual tracking system for arbitrary shaped moving object is proposed. The established tracking system can be divided into model based method that needs previous model for target object and image based method that uses image feature. In the model based method, the reliable tracking is possible, but simplification of the shape is necessary and the application is restricted to definite target mod el. On the other hand, in the image based method, the process speed can be increased, but the shape information is lost and the tracking system is sensitive to image noise. The proposed tracking system is composed of the extraction process that recognizes the existence of moving object and tracking process that extracts dynamic characteristics and shape information of the target objects. Specially, active contour model is used to effectively track the object that is undergoing shape change. In initializatio n process of the contour model, the semi-automatic operation can be avoided and the convergence speed of the contour can be increased by the proposed effective initialization method. Also, for the efficient solution of the correspondence problem in multiple objects tracking, the variation function that uses the variation of position structure in image frame and snake energy level is proposed. In order to verify the validity and effectiveness of the proposed tracking system, real time tracking experiment for multiple moving objects is implemented.

Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning (딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정)

  • Kim, Hyunwoo;Park, Sanghyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

Fast Elliptic Object Reconstruction from Projections by Support Estimation (서포트 추정을 이용한 빠른 이미지 사영 기반 타원형 물체 복원 기법)

  • Ko, Kyeong-Jun;Lee, Jung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.105-106
    • /
    • 2007
  • We present a fast reconstruction technique for elliptic objects, which can be applied to real-time computer tomography (CT) for simple geometric objects. It will be also shown that only 3 projections are needed to reconstruct an ellipse. A piecewise quadratic model is also proposed for more efficient Kalman filter based support estimation, which is used for the fast reconstruction technique. The performance of the piecewise quadratic model is compared with that of the existing piecewise linear model. Simulation results for the fast reconstruction are also presented.

  • PDF

Robust Real-time Detection of Abandoned Objects using a Dual Background Model

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.771-788
    • /
    • 2020
  • Detection of abandoned objects for smart video surveillance should be robust and accurate in various situations with low computational costs. This paper presents a new algorithm for abandoned object detection based on the dual background model. Through the template registration of a candidate stationary object and presence authentication methods presented in this paper, we can handle some complex cases such as occlusions, illumination changes, long-term abandonment, and owner's re-attendance as well as general detection of abandoned objects. The proposed algorithm also analyzes video frames at specific intervals rather than consecutive video frames to reduce the computational overhead. For performance evaluation, we experimented with the algorithm using the well-known PETS2006, ABODA datasets, and our video dataset in a live streaming environment, which shows that the proposed algorithm works well in various situations.

Extending Object-Oriented Models with Scoping Constructs (객체지향 모델에서 사용범위 기능 도입에 관한 연구)

  • 권기항;김지승
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.2
    • /
    • pp.195-199
    • /
    • 1999
  • While object-oriented models are effective in achieving sharing and code reusability, they unfortunately lack a mechanism for giving scope to objects. We propose an object-oriented model in which each object can be given a scope, i.e., an object becomes available only when it is needed. Thus, the set of currently available objects is dynamically changing and only the needed set of objects is maintained in this model. We illustrate the usefulness of this model through some examples.

  • PDF

Procedural Behavior Model using Behavior Tree in Virtual Reality Applications

  • Seo, Jinseok;Yang, Ungyeon
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.179-184
    • /
    • 2019
  • This paper introduces a study for procedurally generating the behavior of objects in a virtual environment at runtime. This study was initiated to enable the behavioral model of objects in virtual reality applications to evolve in response to user behavior at runtime. Our approach is to describe the behavior of an object as a behavior tree, and to make a node of the behavior tree change to another type if a certain condition is satisfied. We defined four types of node changes: "parameterized", "probabilistic", "alternate", and "variant". We experimented with a virtual environment that includes a variety of simple procedural elements to explore the possibilities of our approach. As a result of the implementation, if an optimization algorithm that can select and apply the optimized procedural elements in response to the user's behavior is complemented, it is confirmed that more intelligent objects and agents can be implemented in virtual reality applications.

The Modeling Scheme of RFID Tags for Processing Regional Queries

  • Kim, Dong-Hyun;Hong, Bong-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.110-116
    • /
    • 2008
  • A RFID is an automatic data collection system based on the radio frequency and is the key technology of ubiquitous computing environments. Since the locations of objects attached by RFID tags can be acquired by readers, it is possible to query the locations of tags. To query tags efficiently, the data of RFID tags should be modeled and indexed. However, since the location information of tags, the predicates of queries, are differ from coordinates of moving objects, it is difficult to model tags under the concept of moving objects, In this paper, we propose the location model of tags to represents the trajectories of tags. The location model is composed of the set and graph based approaches.