• Title/Summary/Keyword: Model Material Test

Search Result 1,461, Processing Time 0.031 seconds

A Study on the Bearing Capacity of Gravel Column in Soft Ground (연약지반에서의 쇄석골재 말뚝의 지지력 특성 연구)

  • 천병식;여유현
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.407-414
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel rile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material. Gravel material seems better than sand material in bearing capacity and it is found that bearing capacity is larger when gravel is used as compaction pile than as drain from in-situ test on bearing capacity. Increase of bearing capacity with gravel pile means an effect of composite ground by stiffness of gravel material. It can lie supposed to use gravel pile instead of sand pile in view of consolidation effect and bearing capacity.

  • PDF

Feasibility Study on the Fire Scenario Design of a Couch Burning through a Fire Spread Model (화염 전파모델을 이용한 소파화재 설계화원구성의 적용성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The present study has been performed to examine the feasibility of a flame spread model on the design fire scenario for fire risk analysis. Thermo-Gravimetric analysis and sample burning test were conducted to obtain the material properties of a single couch covered with synthetic leather material and a series of FDS calculations applying with the measured material properties were performed for different grid sizes. The overall fire growth characteristics predicted by the fire model were quite different from the results of a real scale fire test and the initial peak value of the HRR and total released energy showed the results within a 30% discrepancy for the computational grids used in the present study. The current model has some limitations in predicting the fire growth characteristics, such as fire growth rate and the time to the maximum HRR. This study shows that the fire model may be applicable to creating the design fire scenario through continuous model improvement and detailed material properties.

Numerical and Experimental Approach to Investigate Plane-view Shape and Crop Loss in Multistage Plate Rolling (다단 후판압연에서 평면형상 및 실수율 고찰을 위한 수치적, 실험적 연구)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1117-1125
    • /
    • 2013
  • A finite element based approach that can be used to investigate the plane-view shape and crop loss of a material during plate rolling is presented. We employed a three-dimensional finite element model to continuously simulate the shape change of the head and tail of a plate as the number of rolling passes increases. The main feature of the proposed model lies in the fact that the multistage rolling can be simulated without a break because the rolling direction of the material is reversibly controlled as the roll gap sequentially decreases. The material constants required in the finite element analysis were experimentally obtained by hot tensile tests. We also performed a pilot hot plate rolling test to verify the usefulness of the proposed finite element model. Results reveal that the computed plane-view shapes as well as crop losses by the proposed finite element model were in good agreement with the measured ones. The crop losses predicted by the proposed model were within 5% of those measured from the pilot hot plate rolling test.

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation (불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사)

  • Lee, Minho;Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.93-105
    • /
    • 2017
  • This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.

The Study of Verification Bi-Digital O-Ring Test by gauges (계측기(計測器)를 이용한 O-Ring Test법(法)의 검증(檢證)에 관(關)한 연구(硏究))

  • Kim, Jeong-Ryeol;Kim, Dal-Rae
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.225-247
    • /
    • 1995
  • Using Bi-Digital O-Ring Test which was developed by Ohmura Toshiaki, constiution classification by the vegetables' was Measured by various muscle power measurement meters and the results are as follow: 1. Pinch Gauge (Model:pc5030HPG, Japan) is the gauge to measure finger power between the thumb and the second finger, Grip Strength Dynamometer (Model: T.K.K. 5101, Japan) is to measure the hand power (hand dynamometer), Back Strength Dynamometer (Model: T.K.K. 5102, Japan) is to measure back muscle strength, Vertical jump Meter (Model: T.K.K. 5106, Japan) is to measure the height of jump. The above gauges were and its result found that the radish, potato, carrot and cucumber can influence to muscle strength was not true. 2. When the physical constitution is distinguished by the O-Ring Test method, Taeyangin's rate appeared as average 21% although it was insisted that there will be only 0.03-0.1%. This means that the physical constitution but it appears accidently according to the examinee's emotion about the material such as vegetable etc. as favor or unfavor. 3. It was found that the result of O-Ring Test is the same at any time and at any place was not true. there is no reemergence character. 4. The import of O-Ring Test mehtod to the physical discrimination disregarded that the mental factor influences absolutely to the physical heath in the ideological physi cal constitution medical science. 5. 'O-Ring Test method is a objective judgement method.' is wrong judgement. As you see on the above result, Bi-Digital O-Ring Test set the changeable voluntary muscle as the standard of the judgument, that was first mistake logically, second in spite of leass influence of mental influence by the examiner and examinee than the vegetable discrimination influence, the test disregarded the influence. Third, only grasp of some material on hand can influence to the voluntary muscle was a wrong theory disregarding the physiology. Finally the misunderstaning his subjective view as an objective view in spite of examiner and examinee's strong influence. Therefore such kind of physical descrimination method must be sublated.

  • PDF

Nonlinear Flexural Analysis of PSC Test Beams in CANDU Nuclear Power Plants

  • Bae, In-Hwan;Choi, In-Kil;Seo, Jeong-Moon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.180-190
    • /
    • 2000
  • In this study, nonlinear analyses of prestressed concrete(PSC) test beams for inservice inspection of prestressed concrete containments for CANDU nuclear power plants are presented. In the analysis the material nonlinearities of concrete, rebar and prestressing steel are used. To reduce the numerical instability with respect to the used finite element mesh size, the tension stiffening effect has been considered. For concrete, the tensile stress-strain relationship derived from tests is modified and the stress-strain curve of rebar is assumed as a simple bilinear model. The stress-strain curve of prestressing steel is applied as a multilineal curve with the first straight line up to 0.8fpu. To prove the validity of the applied material models, the behavior and strength of the PSC test specimens tested to failure have been evaluated. A reasonable agreement between the experimental results and the predictions is obtained. Parametric studies on the tension stiffening effects, the impact of prestressing losses with time, and the compressive strength of concrete have been conducted.

  • PDF

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

A Study on the Characteristics of Stress Transfer around Cavern due to Cavern size and Rock Joint Orientation by Laboratory Model Test (모형실험을 통한 공동규모와 절리 방향성에 따른 공동배면의 응력전이 특성에 대한 연구)

  • Kim, Sang-Hwan;Shin, Beom-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.595-606
    • /
    • 2009
  • This paper presents the characteristics of stress transfer around carven due to cavern size and rock joint properties by laboratory model test. In order to perform this study, eight different scaled model tests were carried out according to excavation stage. The limited numerical analysis were also performed to verify the model test results. The amount of stress transfer around the cavern is increased and then decreased by longitudinal arching effect according to tunnel excavation. It is founded that the stress developed around the cavern during excavation is increased when the cavern size and joint orientation are increased. It is also investigated that shear behaviour (such as stress, deformation) developed around cavern is considerably depended on the characteristic of fill material, dip and direction of joints. It is suggested that the behaviour will be verified throughout the 3D numerical prediction.

  • PDF

Simulation and Light Impulse Test Results of Shieldless Vacuum Interrupter (아크쉴드가 없는 진공인터럽터의 유한요소해석 및 뇌임펄스 성능)

  • Yoon, Jae-Hun;Kim, Sung-Il;Kim, Boung-Ouk;Moon, Ki-Lim;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.45-45
    • /
    • 2010
  • This paper discusses the simulation and LI(light impulse) test of the shieldless vacuum interrupter concept. The shields of vacuum interrupter play an important role in absorbing the metal vapor. But shield distort the electric field distribution of inner vacuum interrupter. Therefore, the insulation efficiency will improve. if shield of vacuum interrupter inside does not exist. As a result, FEM simulation show that improve distribution of electrical field and equi-potential line. But LI test result dissimilar to FEM simulation result. Shieldless vacuum interrupter model lower BIL(breakdown impulse light) than vacuum interrupter have installed shield. Because conditioning process occurred metal vapor. This paper compared that FEM analysis and LI test of installed shield model and shieldless model.

  • PDF

A Study on Insulating Design and Test of Mini-Model windings for a 22.9 kV Class HTS Transformer Reducing AC Loss (저손실 22.9 kV급 고온초전도 변압기를 위한 미니 모델 권선의 절연 설계 및 시험 연구)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van Dung;Kwag, Dong-Sun;Lee, Chang-Hwa;Kim, Hea-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.94-99
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9 kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

  • PDF